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Abstract
Deriving global diagnoses for observations from
multiple scenarios is computationally challeng-
ing. In this paper, we propose with MSRC-Tree a
diagnosis algorithm that considers all scenarios in
a single search and compare it to the naive strategy
of collecting conflicts for all individual scenarios
first and deriving global diagnoses from them in
a second step. For ISCAS85 circuits with up to 3
faults and up to twenty failed test cases, we could
achieve a speed-up of up to two orders of mag-
nitude, where MSRC-Tree offered better perfor-
mance also on average and for most scenarios.

1 Introduction
Designing and realizing a system is most often a cumber-
some process. Fortunately, there is a variety of techniques
that help us along the way. This includes design patterns
that assist us in our development steps, formal methods like
model-checking [1] that allow us to prove properties of a
system’s model, or testing concepts and corresponding ora-
cles [2] that allow us to evaluate exemplary system behavior
obtained via simulations or physically testing a system. If
something goes wrong, model-based diagnosis (MBD) [3;
4] concepts enable us to reason about the origin(s) of en-
countered problems—the first step in a debugging process.

When deploying MBD, we usually focus on individual
scenarios for which a system did not live up to our expecta-
tions. That is, first, we consider the behavior observed for
some simulation or test and investigate whether it fits our
expectations as captured in a system description. If there
is an inconsistency, we then reason which subsets of a sys-
tem’s components could explain the malfunction—if we as-
sume those components to be faulty. Usually this will give
us more than one such diagnosis. We will then either have
to investigate all these diagnoses, or we can implement a
probing strategy [4; 3] that will allow us to discriminate
between diagnoses via providing new measurements [5;
6]. The latter is referred to as sequential diagnosis.

In practice, in many situations we have access to data ob-
served for multiple independent scenarios in the first place.
For instance after executing a test suite, or when we simply
observe a system operating 24/7 for some specific scenar-
ios. Light-weight diagnosis techniques like Spectrum-based
Fault Localization (SFL) [7] take advantage of this and rea-
son with all these data. In this manuscript, we will thus
discuss ways how to do so also in the context of MBD.

So, while we usually consider failed test cases in isolation
(and then think about how to aggregate the information),
our motivation is to implement a diagnosis algorithm that is
able to consider all scenarios simultaneously. When we rea-
soned in [8] whether we could use a combinatorial test suite
to trigger and diagnose all faults present in a system, we
discussed a naive way to compute such global diagnoses.
That is, due to the non-monotonic diagnosis context (see
also Cor.2), we obviously can’t just combine the diagnoses
for the individual scenarios in order to arrive at global ones,
which is a problem also for distributed diagnosis [9]. Rather
we can compute them by collecting the conflicts for the in-
dividual scenarios, and then compute the global diagnoses
as the minimal hitting sets (MHSs) of those. A disadvan-
tage is that there is redundant work—like when we possibly
compute one and the same conflict for every failed test case,
or compute more conflicts than necessary (see Sec. 3).

In order to address this, we describe in this manuscript
a conflict-based diagnosis algorithm where we consider
multiple failing scenarios simultaneously. We extend RC-
Tree [10] in order to derive our new MSRC-Tree algorithm,
but the underlying concept can be easily integrated also into
other conflict-driven algorithms like HS-DAG [11].

First experiments show the viability of our concept and
they allowed us to identify first performance characteris-
tics. As our experimental results suggest, there are situa-
tions where we can save a lot of expensive solver calls, re-
sulting in a run-time advantage of up to two orders of mag-
nitude. There are, however, also cases where the naive con-
cept has its advantages due to the specific structure of the
diagnosis problem and the chosen search parameters.

In our presentation, we will first discuss the basics of
consistency-oriented model-based diagnosis in Sec. 2. Af-
ter rehearsing the naive concept and proposing the details
of our MSRC-Tree algorithm (and an optional alternative
heurstistic) in Section 3, we will report on first experiments
for ISCAS85 circuits in Sec. 4. Following a discussion of
related work in Sec. 5, we conclude with final remarks.

2 Preliminaries: Of tests, conflicts, hitting
sets and model-based diagnosis

As outlined in the introduction, we’re aiming to reason with
observations for a set of individual and independent scenar-
ios for which a system failed. No matter whether the ob-
served scenarios came from observing real-world behavior
for sample scenarios, or during testing, in our presentation,
we will refer to them as individual tests or test cases in order



to emphasize their independence. In this respect, please note
that while we will use a combinational circuit for illustration
purposes, with our algorithm we can indeed investigate also
sequential behavior of systems with internal states like di-
agnosed in [12]. A system’s input can thus certainly be also
a sequence as supported by our definition of a test case.

Definition 1 (test case, test suite). A test case t = (δ, ρ)
for some system S with inputs I and observable outputs O
defines an input stimulus δ for S via defining desired values
for all inputs i ∈ I . The system’s reaction to δ is defined in ρ
either via defining the expected values for all o ∈ O, or via
some function implementing an automated test oracle [2].
A test suite T is a finite and non-empty set of test cases.

As underlying diagnostic reasoning concept we rely on
consistency-oriented model-based diagnosis as character-
ized by de Kleer and Williams in [4] and Reiter in [3]
for single scenarios. There, a system description SD de-
scribes the behavior of the system in sentences of the form
hi → nominal behavior of ci. Those sentences state that
under the assumption that some component ci works cor-
rectly (encoded in a health state variable hi ∈ H) we know
how the component shall behave.

We then have to provide such sentences for all compo-
nents, and complement them with their connections and
other system and background knowledge. Depending on
the formalism, such background-knowledge includes, e.g.,
the mutual exclusiveness of values for some signal. Since
we make no assumptions about how the components behave
in case of a fault, the approach is considered to implement
a weak fault model. While there exists indeed also a theory
for considering fault models, it is out of this paper’s scope.
Given some observations OBS about the system’s actual be-
havior, we can reason with SD whether OBS is consistent
with the expected behavior described in SD under the as-
sumption that all components work as expected (such that
SD ∪ OBS ∪ {hi|hi ∈ H} is consistent or satisfiable). If
this is not the case, we can furthermore define and verify
hypotheses ∆ ⊆ H concerning faulty components [4; 3; 11;
10]—verifiable via checking SD∪OBS∪{hi|hi ∈ H \∆}.
Definition 2. A diagnosis for a diagnosis problem
(SD, H,OBS) is a subset-minimal set ∆ ⊆ H such that
SD ∪ OBS ∪ {hi|hi ∈ H \∆} is consistent (satisfiable).

We can compute the diagnoses for some diagnosis prob-
lem as minimal hitting sets of the set of conflicts, where it
suffices to focus on the subset-minimal conflicts [3] (Cor. 1).

Definition 3. A conflict C for a diagnosis problem
(SD, H,OBS) is a subset ofH such that SD∪OBS∪{hi|hi ∈
C} is inconsistent (unsatisfiable). If no prober subset C ′ of
C is a conflict, then C is a subset-minimal conflict.

Definition 4. A hitting set ∆ for a set CS of conflicts as of
Def. 3 is a subset ofH such that ∆∩Ci 6= ∅ for allCi ∈ CS.
∆ is a minimal hitting set if and only if no proper subset of
∆ is a hitting set as well.

Corollary 1. A diagnosis ∆ for (SD, H,OBS) is a minimal
hitting set for the set of all conflicts for this diagnosis prob-
lem. Since ∆ will hit also all non-minimal conflicts if it hits
the minimal ones, it suffices to focus on the minimal conflicts
when computing the diagnoses.

For combinational circuits, we can easily derive a CNF
description for SD and the observations OBS. So for in-
stance, we can use the following nine clauses to describe
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Figure 1: A simple combinational circuit.

the simple circuit with two AND-gates and one OR-gate de-
picted in Figure 1. Please note that each gate has its corre-
sponding health state variable hi indicating whether it works
correctly or not. If hi is⊥ (False) such that the gate is faulty,
the gate’s clauses are satisfied by default. Otherwise the
remainder of the individual clauses implement the desired
function such that, e.g, an AND-gate’s output is> (True) iff
its two inputs are > as well.

• ¬h1 ∨ ¬o1 ∨ a
• ¬h1 ∨ ¬o1 ∨ b
• ¬h1 ∨ ¬a ∨ ¬b ∨ o1
• ¬h2 ∨ ¬o2 ∨ a ∨ c
• ¬h2 ∨ o2 ∨ ¬a

• ¬h2 ∨ o2 ∨ ¬c

• ¬h3 ∨ ¬o3 ∨ o1

• ¬h3 ∨ ¬o3 ∨ o2

• ¬h3 ∨¬o1 ∨¬o2 ∨ o3

Using a CNF description of SD and unit clauses for the
observations and health state assignment, we can exploit
an off-the-shelf SAT solver for assessing whether some ∆
makes the observations consistent with SD as of Def. 2. If
this is not the case, we can ask the solver for a conflict set (a
minimal unsatisfiable core in H). Please note that we will
use examples from this domain for our evaluation in Sec. 4.

Some MBD algorithms like RC-Tree [10] allow us to
compute the conflicts on-the-fly. This is of advantage es-
pecially if we are interested only in diagnoses up to a cer-
tain cardinality. That is, when we restrict our search by a
common and intuitive assumption that we consider it un-
likely that more than l components fail simultaneously. If
we compute the conflicts on-the-fly, we might need to com-
pute only a subset of all minimal conflicts, i.e., a subset that
characterizes all ∆ s.t. |∆| ≤ l. Also in our algorithm, we
support such a bound for offering scalable computations.

In contrast to sequential diagnosis where we probe for
new data that allow us to discriminate between diagnoses,
we are considering data from multiple independent scenar-
ios. Due to this non-monotonic setting, we obviously can’t
simply compute global diagnoses (that resolve the issues in
all scenarios) as combinations of those for the individual
scenarios (see Cor. 2), and present our solution in Sec. 3.

3 Considering multiple failed test cases in a
single diagnostic search

Our motivation is quite straightforward in that we would like
to consider multiple failed test cases simultaneously in our
diagnostic reasoning. In line with the ideas behind SFL,
considering multiple failed test cases shall allow us to (a)
consider more data in order to increase the preciseness of
our reasoning, and (b) since not all faults will be triggered
by a single test case, the reasoning then will draw on more
representative data for isolating a system’s faults.



It is obvious though that these two aspects are orthogo-
nal: On one hand, we’d like to be more precise and compute
less diagnoses, and on the other one, we try to trigger all the
faults present in the system. To which degree some com-
putation will achieve either goal will thus depend heavily
on the test suite. Please note that while we have to take
this into account when considering the experimental results,
evaluating a test suite’s quality is outside this paper’s scope.
Rather, we focus on how to compute diagnoses for multiple
failed test cases and refer the interested reader to, e.g., [8;
13] for a discussion of a test suite’s diagnostic quality.

Like mentioned in the introduction, we discussed recently
a straightforward and naive approach of how we can derive
global diagnoses for multiple failed scenarios. There, we
solve in a first step the diagnosis problems for the individual
failed test cases, and then compute the global diagnoses as
the minimal hitting sets of all the conflicts collected from
the individual scenarios (Algorithm 1 as taken from [8]).

Algorithm 1 A straightforward, naive way to compute
global diagnoses for multiple scenarios

Requires: A test suite T , a system description SD, a cardi-
nality limit l, as well as functions diag(OBS, SD, l) and
MHS(CS, l). The former function computes the diag-
noses and conflicts for a diagnosis problem OBS, SD, l),
and the latter the minimal hitting sets—up to cardinality
l—for a set CS of conflicts.

1: procedure COMBDIAG(T ,SD,l)
2: T ′ ← ∅
3: CS′ ← ∅
4: for t ∈ T do . Stage 1
5: (v,OBS)← execute(t)
6: if v = failed then
7: T ′ ← T ′ ∪ {OBS}
8: end if
9: end for

10: for OBS ∈ T ′ do . Stage 2
11: (DS,CS)← diag(OBS, SD, l)
12: CS′ ← CS′ ∪ CS
13: end for
14: RES← SMHS(CS′, l) . Stage 3
15: end procedure

This algorithm serves as our baseline and is based on
3 stages. In Stage 1, we execute all test cases t and for
each one we derive a tuple (v,OBS) with a verdict v (either
passed or failed) and OBS as the set of observations obtained
for the execution. Please note that OBS thus shall contain
also the input stimulus δ. If v == failed, we add OBS to
T ′. After completing Stage 1, T ′ contains corresponding
observation data OBSi for each failed t (and only for those).
In Stage 2, we diagnose all these failed test case executions
individually using an algorithm like RC-Tree [10] or HS-
DAG [11]. This algorithm shall not only return the set of
diagnoses DS, but also the set CS containing all minimal
conflicts derived during the computation. These conflicts
are collected in CS′, so that upon completion of Stage 2,
CS′ contains all conflicts (and only those) needed to derive
the individual diagnoses. In the final Stage 3, we compute
the MHSs for CS′ and return them via RES. We refer the
interested reader to [8] for a more detailed discussion and
corresponding proofs of soundness and exhaustiveness, but
let us now rehearse a few essential observations.

Corollary 2. (see Cor. 2 in [8]) For some diagnosis ∆ ∈ DS
for a cardinality-restricted diagnosis problem (OBS, SD, l)
considered in Stage 2, RES might neither contain ∆ nor
some superset ∆′ s.t. ∆ ⊆ ∆′.

This corollary illustrates that the global diagnoses in RES
are not simply the possible combinations of the diagnoses
for the individual problems (we are non-monotonic [3; 4]).

Corollary 3. (see Thm. 1 in [8]) An MHS ∆ ∈ RES defines
an assignment to the health state variables such that for all
OBS ∈ T ′ we have that those observations are consistent
with SD for this assignment. Formally, we have that OBS ∪
SD ∪ {hi|hi ∈ H \∆} is satisfiable for each OBS ∈ T ′.

Corollary 4. (cf. Corollary 3 in [8]) For every MHS ∆ ∈
RES, and for every OBS ∈ T ′ there is some ∆′ ⊆ ∆ that is
a diagnosis for (OBS, SD, l).

Now, since Definition 2 of a diagnosis does not fit a multi-
scenario setting, let us define the term multi-scenario diag-
nosis (in [8] we used the term multi-observation diagnosis
which could be unintentionally associated also with sequen-
tial diagnosis) for describing the ∆ ∈ RES based on Cor. 4.

Definition 5. [multi-scenario diagnosis] (cf. Def. 5 in [8])
A multi-scenario diagnosis for some test suite T and a sys-
tem description SD is a subset ∆ ⊂ H such that:

• no proper subset of ∆ is also a multi-observation diag-
nosis

• for every test case t ∈ T whose execution failed, there
is some ∆′ ⊆ ∆ that is a diagnosis for that failed test
case according to Definition 2.

If we have a detailed look at the computation in Alg. 1,
we can easily see that we might compute conflicts more than
once—possibly for every test case. This stems from the fact
that, in principle, we solve |T ′| individual diagnosis prob-
lems in Stage 2 (neglecting to exploit previously computed
conflicts for solving the next diagnosis problem) and then
“combine” the results via computing the MHSs in Stage 3.

In contrast, we propose with MSRC-Tree a concept where
we extend RC-Tree such that we consider all scenarios si-
multaneously and avoid such redundant conflict compu-
tations. We compute the needed conflicts on-the-fly—
switching our focus between the scenarios—and implement
a single exploration strategy for conquering the global di-
agnosis search space. Consequently, we create a single tree
for our search, rather than multiple (local) ones when us-
ing RC-Tree in Alg. 1. To this end, we consider all pre-
viously computed conflicts (no matter for which OBS they
were computed) and keep track of which OBS have been
previously addressed in a search branch. Please note that
for MSRC-Tree, we assume that T ′ containing the OBSi for
the failed test cases (see Stage 1 of Alg. 1) is available.

Algorithm 2. (MSRC-Tree) Let D be a growing node- and
edge-labeled tree with some initial and unlabeled root node
n0. Process unlabeled nodes in D in breadth-first order as
follows, where for some node n, h(n) is defined to be the set
of edge labels on the path in D from n0 to n (h(n0) = ∅).
Furthermore assume the sets Θ(n) and ΘC(n) to be subsets
of

⋃
Ci∈CS Ci, where Θ(n0) = ΘC(n0) = ∅. Let S(n) be a

subset of integers in {0, . . . , |T ′|−1} where the initial value
for n0 is S(n0) = ∅, let l > 0 be an integer that defines the
desired maximum diagnosis cardinality, and let 0 ≤ o < |T |
be an integer storing which OBSo ∈ T ′ was considered last



(the initial value being o = |T ′| − 1). Furthermore, let CS
be a set containing all conflicts derived so far.

1. (Closing) If there is a node n′ s.t h(n′) ⊂ h(n) and n′
is labeled with “X” (h(n′) is a hitting set), then close
n. Neither compute a label for n, nor generate any
successor nodes for n, but proceed with the next node.

2. Iff for all OBSi ∈ T ′ we have that i ∈ S(n) label n
with “X”. Otherwise label n with some Cj that is the
first set in CS s.t. Cj ∩ h(n) = ∅. If there is no such
Cj , then repeat the following steps a to c until we either
find such a Cj as label for n, or until we have for all
OBSi ∈ T ′ that i ∈ S(n), so that we label n with “X”.

(a) o = (o+ 1)%|T ′|
(b) while o ∈ S(n) let o = (o+ 1)%|T ′|
(c) check for OBSo ∈ T ′: if SD ∪ OBSo ∪ h(n) is

consistent, then S(n) = S(n)∪{o}. Else compute
a conflict Cj ⊆ H for SD∪OBSo ∪ h(n) as label
for node n

3. (Pruning) Iff a priorly unused set Ci was used to la-
bel node n, attempt to prune D. That is, for nodes n′
labeled with someCj ∈ CS s.t. Ci ⊂ Cj do as follows:

(a) Relabel n′ withCi. Then, for any ci inCj \Ci, the
edge labeled ci originating from n′ is no longer
allowed. The node connected by this edge and all
of its descendants are removed.
Now, for all children n′′ of n′ update ΘC(n′′) to
ΘC(n′′)\ (Cj \Ci) and for all descendants n′′′ of
some n′′ propagate the update accordingly. Then
create for all n′′ and n′′′ all the edges that are not
avoided anymore (due to the updates to their Θs),
and process the new nodes in breadth-first order
as usual (choosing a node with the smallest h(n)).

(b) Eliminate Cj from CS.

If the currently processed node n was removed, pro-
ceed with the next unlabeled node.

4. If n was labeled with some Ci ∈ CS and h(n) < l,
generate for each ci ∈ Ci \ Θ(n) a new edge e origi-
nating in n and labeled with ci. Generate a new node
n′, where Θ(n′) = ΘC(n′) ∪ Θ(n) with ΘC(n′) =
{cj |cj ∈ Ci and we already created an edge labeled
cj from n} as destination for the edge e. Let the initial
S(n′) be inherited from its parent n s.t. S(n′) = S(n).
The new node n′ will be processed (labeled and ex-
panded) after all new nodes ni in the same generation
as n (s.t. |h(ni)| = |h(n)|) have been processed.

5. If there is no further unlabeled node, return tree D.

Please note that in our description, the on-the-fly compu-
tation of conflicts Ci, the conflict buffer CS and also the car-
dinality exploration limit l are explicitly outlined. Even if
not mentioned in their definitions, usually these features are
implemented also for algorithms like RC-Tree or HS-DAG.

MSRC-Tree is based on RC-Tree whose basic concept
is to explore the diagnosis search space in a breadth-first
way via resolving encountered conflicts. That is, for each
identified conflict, RC-Tree generates (like HS-DAG) a new
search branch for each hi in Cj , and h(n) as the collec-
tion of hi along a branch gives us thus one hi for each con-
flict label along the path from the root node n0 to n. Via
the breadth-first exploration and the closing as well as prun-
ing steps, the algorithm ensures that no non-minimal hitting

set h(n) is labeled as diagnosis (with a X). In contrast to
HS-DAG, RC-Tree does not create all outgoing edges (only
those not in Θ(n)) since RC-Tree creates every h(n) at most
once in order to avoid redundant computations.

In MSRC-Tree, we have to investigate not only one sce-
nario’s observations in Step 2 (where we decide whether
h(n) is a diagnosis or generate conflicts as labels on-the-
fly), but those of all scenarios. In Step 2, we thus have
to verify whether h(n) provides a health state assignment
that makes all OBSi in T ′ consistent with SD as required
by Def. 5. In the naive algorithm, this is achieved by first
collecting the conflicts for all the OBSi (via solving the
individual diagnosis problems in Stage 2), but in MSRC-
Tree we compute these conflicts on-the-fly. In particular,
we (possibly repeatedly) select some OBSi ∈ T ′. That is,
we first check whether there is already some conflict that
we can use as label, and if not, we check whether h(n)
makes SD consistent with some OBSi that was incompati-
ble with the h(n′)s in the path to n (i.e., subsets of h(n))
such that i /∈ S(n). We use S(n) and the inheritance of the
initial value in Step 4 along a branch to collect these data.
From those OBSi not in S(n), we choose the next one after
the previously used OBSj (in a global context and not per
branch), and store the new i in o. We thus rotate over the
scenarios, where the idea is to possibly generate conflicts
from multiple scenarios as early as possible. Now, only if
|S(n)| = |T ′| (so that we can’t compute a conflict for h(n)
for any of the scenarios), we label a node with a X in order
to indicate a diagnosis (h(n) is an MHS of the conflicts of
all scenarios). Also in MSRC-Tree, the breadth-first explo-
ration and the closing as well as pruning steps ensure that
we do not compute non-minimal diagnoses.

Please note that we could opt also for some other observa-
tion selection strategy in Step 2. In our experiments, we will
thus report also on an MSRC-Tree variant where we select
the observations in ascending order in each branch (coined
linear, in contrast to the standard strategy rotate).

In RC-Tree (and also HS-DAG) the pruning step is not
mandatory if the solver returns minimal conflicts (even for
an on-the-fly computation). The same is true for Alg. 1,
since there we can sort the conflicts for stage 3 according to
their cardinality. In MSRC-Tree, the pruning step is impor-
tant though, since even if a solver returns minimal conflicts,
we have to be aware that this holds only for single scenarios.
In others, the same conflict could be non-minimal (see [8]
for an example). So, also if we adapted HS-DAG to mimic
the exploration concept of MSRC-Tree in terms of selecting
observations, the pruning step would be required.

While we can’t provide full proofs for space reasons,
MSRC-Tree is indeed sound and also exhaustive.

Theorem 1. Algorithm 2 is sound and exhaustive within
the bounds of cardinality limit l. That is, for every node
n marked with X, h(n) is a multi-scenario diagnosis as of
Def. 5. Furthermore, if there is some multi-scenario diagno-
sis ∆ with |∆| ≤ l for a system and a set of failed test cases
T ′, the tree computed by Algorithm 2 will contain a node n
such that h(n) = ∆ and n is labeled with X.

Proof. (brief sketch) Soundness can be argued via the
breadth-first search and the closing rule that ensure subset-
minimality on one hand, and on the other hand drawing on
the fact that we mark a node with X only if there is no ob-
servation such that OBS ∪ SD ∪ {hi|hi ∈ H \ h(n)} is



inconsistent. Exhaustiveness is ensured by the exhaustive
breadth-first search (see Step 4) in relation to Def. 5.

Finally, we would like to note that while the naive al-
gorithm needs to compute all conflicts for characterizing
the individual diagnoses up to size l, MSRC-Tree computes
only those necessary to describe the global ones up to size l.

4 Experiments
For our first experiments, we focused on well-known com-
binational circuits from the ISCAS 85 benchmarks [14].
These experiments were conducted on an Early 2015 Mac-
book Pro with a 2.9Ghz i5 Intel CPU, 8GB of RAM, and
an SSD. MSRC-Tree in its standard variant and a variant
implementing the linear strategy, as well as the naive algo-
rithm were implemented in Python 3, where we used pico-
mus 965 [15] as SAT solver. For creating faulty circuits, we
injected 1 to 3 faults by replacing the functionality of a gate
with another gate’s, or implementing stuck-at-zero (SA0) or
stuck-at-one (SA1) faults. Always ignoring the gate’s orig-
inal type, for unary gates like a buffer or inverter thus the
possible faults were {BUFF, INV, SA0, SA1}, for gates of
type {AND, OR, NAND, NOR, XOR, XNOR} with two in-
puts {AND, OR, NAND, NOR, XOR, XNOR, SA0, SA1},
and for gates of type {AND, OR, NAND, NOR} with more
than two inputs the fault mode list was {AND, OR, NAND,
NOR, SA0, SA1}.

For each fault cardinality we created 5 fault vectors with
20 failing test cases. Then, for each search limit l from 1 to
3, we computed diagnoses for the full test suite, two halves
with 10 test cases, and four quarters with 5 test cases—
amounting to 315 scenarios for each of the circuits c17,
c432, and c499. The reported run-times are averages over
10 runs, so that we solved a total of 28.350 multi-scenario
diagnosis problems for the results in Tables 1 and 2. In
the first table, scalls refers to the number of satisfiable SAT
solver calls, ucalls to the unsatisfiable ones (when we com-
pute a conflict), and tcalls to the total number of solver calls.
We report for each circuit the ratio between the average per-
formance over 10 runs of MSRC-Tree against the naive al-
gorithm and the MSRC-Tree variant implementing the lin-
ear strategy—on average over all scenarios and the best and
worst ratios. Detailed run-time plots are available in Fig. 2.

In Table 2, we show for each of the three algorithms for
how many of the 315 scenarios it offered the best run-time
performance (average run-time over 10 runs). From that ta-
ble we can see that the linear strategy can sometimes outper-
form the standard strategy of MSRC-Tree. Overall, MSRC-
Tree outperformed the naive algorithm for 255 (81%)/305
(96.8%)/260 (82.5%) of the scenarios respectively, aside be-
ing faster on average as suggested by Table 1.

5 Related work
From an abstract point of view, sequential diagnosis [16]
where we focus on determining new “measurements” [5; 6]
for being able to discriminate between diagnoses is related
to our research. While also there the aim is to enrich the data
used in the reasoning process, the focus is on determining
which data queries would support such a discrimination. In
our case, it is pre-defined which data we can use, and we
do not construct distinguishing tests [17]. If one had the
option to (dynamically) tune the generation of the test suite,
sequential diagnosis research would certainly be of interest.

Table 1: Performance ratio of MSRC-Tree in comparison to
the naive Alg. 1 and MSRC-tree with a linear strategy. The
ratios were computed with the average values over 10 runs
(e.g., avg time MSRC-Tree / avg. time naive).

C17 C432 C499
naive linear naive linear naive linear

time best 0.0278 0.427 0.0106 0.159 0.00905 0.225
avg. 0.688 0.981 0.274 0.84 0.899 0.989
worst 1.74 1.66 3.35 1.76 11.6 2.55

scalls best 0 0 0 0 0 0
avg. 0.901 0.942 0.793 0.947 1.2 1.01
worst 2.3 2 8.95 11 16.2 8

ucalls best 0.0417 0.667 0.00733 0.125 0.037 0.333
avg. 0.271 0.997 0.122 0.758 0.213 0.886
worst 1 1.6 1 2.09 1 1.67

tcalls best 0.0274 0.429 0.011 0.171 0.00587 0.3
avg. 0.271 0.982 0.122 0.867 0.213 0.979
worst 1.77 1.67 4.97 1.82 15.2 3

Table 2: Number and percentage of scenarios for which an
algorithm offered the best average run-time over 10 runs.

algorithm C17 C432 C499

MSRC-Tree 143 (45.4%) 215 (68.3%) 171 (54.3%)
linear var. 122 (38.7%) 92 (29.2%) 91 (28.9%)
naive 50 (15.9%) 8 (2.54%) 53 (16.8%)
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Figure 2: Scatter plots comparing MSRC-Tree’s average
run-time (in 10y seconds) against those of the naive algo-
rithm and the linear MSRC-Tree variant (C17/C432/C499).

For such optimizations, we consider work on fault diag-
nosability, e.g, in the area of discrete event systems [18], to
be related even closer. In relation to MSRC-Tree, such work
again has a different focus, but might support us in generat-
ing and fine-tuning test suites.

Observations for multiple time steps have been used, e.g.,
in [19] without referring to independent scenarios or se-
quential behavior though. In [12] we used temporal obser-
vations for investigating temporal specifications, but did not
consider multiple scenarios for a specification. In [20], the
authors also consider the case of multiple observations and
how to handle them. This paper is close to ours, however,
there are also differences like the introduction of different
algorithms relying on hitting-set computations.



6 Summary and conclusions
We proposed in this paper with RC-Tree a conflict-driven
MBD algorithm that considers multiple failed scenarios in
a single search. In our experiments for the ISCAS85 cir-
cuits C17,C432, and C499, MSRC-Tree needed on aver-
age only 0.674/0.307/0.562 the run-time of the naive so-
lution and outperformed it for 81-96.8% of the scenarios.
The best ratio over all circuits and scenarios was 0.0071,
which means a speed-up of over two orders of magnitude.
For some search configurations, MSRC-Tree was 10.1 times
slower though—due to more scalls needed in the specific
searches. An MSRC-Tree variant with an alternative strat-
egy turned out to be an interesting solution as well, offering
the best performance for about a third of the scenarios but
being slower on average. In terms of the best algorithm for
some scenario, we saw that the naive concept was the best
performer for only 2.23% to 16.8% of the scenarios (de-
pending on the circuit). In contrast, MSRC-Tree offered the
best performance for 45.5% to 68.3% of the scenarios, and
its linear variant for 29.2% to 38.7%.

As usual, our run-time evaluation takes single-core per-
formance into account. Considering today’s computers
(even in consumer-grade hardware we sometimes have 8
cores that can deal with 16 threads), parallelization is an in-
teresting topic though. So, while the evaluation still reports
on efficiency and consumed resources then, for the naive
concept we can easily parallelize the consideration of the
individual scenarios in Stage 2. Experiencing an efficiency
drawback of redundantly computing (possibly unnecessary)
conflicts, we could still achieve shorter wall clock run-times
via such a parallelization. Since MSRC-Tree’s performance
advantage reached more than two orders of magnitude, on
consumer hardware it would outperform even a parallelized
naive solution for some scenarios.

If multiple cores are available, a portfolio approach where
we either run MSRC-Tree and its linear variant in parallel
(or all three algorithms) could be an attractive solution. If
we’re targeting a single core scenario, our experimental re-
sults suggest that MSRC-Tree is the most attractive solution
from an overall perspective.

In future research we will evaluate the performance for a
variety of domains, including LTL specifications [12]. We
will also delve into performance details—in order to iden-
tify performance indicators for the individual algorithms.
Such indicators could allow us to suggest which algorithm
to select for some scenario and could provide data for devel-
oping further promising strategies (vs. rotate and linear).
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