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Abstract
Defect prediction is commonly used to reduce the
effort from the testing phase of the software de-
velopment. A promising strategy is to use ma-
chine learning techniques to predict which com-
ponents of the software may be defective. Fea-
tures are key factors to the success of the predic-
tion, and thus extracting significant features can
improve the model’s accuracy. In particular, bad
code smells are a category of those features that
have been shown to greatly improve the predic-
tion performance. However, Designite, a state of
the art framework for bad code smells, has not
been studied in the context of defect prediction.
As such, in this paper we study the performance
of defect prediction models by training multiple
classifiers for 97 real projects, using as features
the Designite and the traditional smells from the
literature, and the combination of both. Moreover,
we apply feature selection, to explore alternative
combinations of the smells. We conclude that the
models trained with both the Designite smells and
the smells from the literature performed the best,
with an improvement of 5% for the AUC score.
Consequently, Designite smells are a good addi-
tion to the smells commonly studied in the litera-
ture for defect prediction.

1 Introduction
In recent years, there has been a higher demand for fast
software delivery while maintaining a good product qual-
ity. Therefore, the trend of research has been focused on
finding approaches to more effectively allocate resources on
the software development pipeline. Since testing is one of
the most time consuming phases, the attention has geared
toward finding novel approaches to minimise the testing
time, without degrading the software quality. In particular,
one of those approaches is based on the application of de-
fect prediction tasks that use prediction models to predict
which software components are defective, thus facilitating
the scheduling of resources to those components.

Commonly studied in the literature, defect prediction al-
gorithms use the historical information of software, such as
its previous versions (through version control tools) and its
reported bugs (through issue tracking tools), as the source of
predictors for the classification of defects. In particular, they
extract a set of features from each component of a software

repository and assign a target label to whether the compo-
nent as defects. This creates the training dataset, which is
used as input to a machine learning algorithm that will out-
put a classification model. This will be use to predict which
components in the following versions may be defective or
not. In the end, these models have been shown to produce
classifiers with a great predictive performance (Lessmann et
al., 2008; Nagappan and Ball, 2005).

A key factor to the success of the defect prediction mod-
els are the features extracted from the software repositories.
One of those features, that has been studied for defect pre-
diction is the set of bad code smells. They are patterns in
the source code that indicate deeper underlying issues in the
system (Fowler, 2019). Due to their high correlation with
the presence of defects, they have been shown to be a good
predictor candidate to build defect prediction classifiers (Pi-
otrowski and Madeyski, 2020). Moreover, their static and
relatively fast acquisition is a good motivator for their us-
age, and they also provide additional information for defect
prediction when used in combination with other metrics.

Previous research on smell-based defect prediction stud-
ied the impact of different smells proposed in the litera-
ture. These include the works published by Martin Fowler
(Fowler, 2019) and Brown (Brown, 1998), which introduce
well known conceptual models for refactoring and bad code
smells. In recent years, several papers were published, ex-
ploring the impact of those smells in defect prediction. Most
of them, proved the correlation between defects and smells,
and a positive impact on the use of smells in defect predic-
tion (Piotrowski and Madeyski, 2020).

Although there is intensive research on the application of
bad code smells in defect prediction, there are frameworks
of smells that have not been explored in this context. In
particular, the Design Code Smells proposed by Ganesh et
al. (Ganesh et al., 2013), a comprehensive catalog of 31
structural design smells, conceptualised with the four fun-
damental object-oriented design principles. Consequently,
the authors developed a tool called Designite that imple-
ments 17 of those features (Sharma, 2018). In this paper,
we empirically study the impact of Designite smells in de-
fect prediction and we compare our results with traditional
smells used in the literature.

Given the research goals, we mined 97 Apache reposito-
ries and extracted the Designite smells, as well as 20 other
traditional smells used in the literature. In addition, we cre-
ated datasets for each category of features and their com-
binations, thus we applied feature selection, trained several
classifiers with those datasets, and selected and optimised



the best models. In the end, the models trained with both
Designite and the traditional smells performed the best, with
a 5% gain of the AUC compared with a classifier trained
with only the traditional metrics with a significance value of
0.05.

The rest of the paper is structured as follows. In Section
2, we discuss the related work. In Section 3 we define the
problem definition regarding defect prediction and the code
smells. In Section 4 we describe the evaluation methodol-
ogy for the defect prediction classifiers. Lastly, in Section
5, we present and discuss the results from this study.

2 Related Work
Defect prediction is one of the most actively researched ar-
eas in software engineering. Its goal is to efficiently produce
a list of defective-prone software components, which will
allow developers to more effectively allocate their time and
resources to those components (Paterson et al., 2019).

The application of bad code smells in defect prediction
has been studied in the literature. Recently, Piotrowski et al.
(Piotrowski and Madeyski, 2020) performed a systematic
literature review of 27 papers from 2006 to 2019, to analyse
the relationship between smells and defects, as well as, to
evaluate the performance of code smells in defect prediction
using machine learning techniques. They confirmed that
there is a positive correlation between code smells, hence
they are a good indicator of defects and they influence posi-
tively the performance of defect prediction models.

From those studies, Ma et al. (Ma et al., 2016) researched
the possibility of improving defect prediction results by us-
ing code smells. They also evaluated whether they could use
the defect prediction’s results to prioritize code smells refac-
toring. They considered 8 smells, detected from a single
version of four projects using the DECOR smell detection
tool (Moha et al., 2010). They found that results from the
code smells detection improved the recall of fault prediction
in all projects by 9% ∼ 16%.

Taba et al. (Taba et al., 2013) proposed a set of antipat-
tern metrics derived from the history of code smells within
the version history of the software. They evaluated defect
prediction models trained with 13 smells taken from multi-
ple versions of Eclipse and ArgoUML (i.e, AntiSingleton,
Blob, ClassDataShouldBePrivate, ComplexClass, Large-
Class LazyClass, LongParameterList, LongMethod, Mes-
sageChain, RefusedParentBequest, SpaghettiCode, Swis-
sArmyKnife and SpeculativeGenerality). In the end, they
found that those smells produce higher density of bugs,
compared against traditional metrics.

Palomba et al. (Palomba et al., 2019; 2016), studied the
effectiveness of the measure of severity of code smells (i.e.,
code smell intensity) as a predictor in defect prediction.
They evaluated the predictive power of the intensity index
of 6 code smells (i.e., GodClass, DataClass, BrainMethod,
ShotgunSurgery, DispersedCoupling and MessageChains)
by adding it to existing prediction models and comparing
them against baseline metrics. In addition, they did an em-
pirical comparison between their model and the antipattern
metrics model suggested by Taba et al. (Taba et al., 2013),
to which they concluded that the intensity index always pos-
itively contributes to the state-of-the-art prediction models.

Although there are several studies that have explored the
impact of code smells in defect prediction, there is a frame-
work of code smells developed by Ganesh et al.(Ganesh et

al., 2013), based on the design principles of object-oriented
programming, which has not been studied in the context of
defect prediction. Furthermore, Sharma developed a tool
called Designite (Sharma, 2018) that implements a subset
of 17 of the proposed smells. In this paper, we aim to under-
stand what contribution can the Designite smells introduce
to the code smells already studied for defect prediction.

3 Problem Definition Methodology
In this section we define the application of bad code smells
in defect prediction. We start by formally defining defect
prediction and its process, from the extraction and construc-
tion of the datasets to the training and evaluation of the de-
fect prediction classifiers (Section 3.1). Then, we describe
the bad code smells, and their contribution to the defect pre-
diction (Section 3.2).

3.1 Defect Prediction
The defect prediction goal is to predict which components
on the next version of the software have defects. Formally, a
software repository is usually composed by a sequence of n
versions V = {v1, ..., vn}, consequently composed by a dis-
crete number of components. In our study, we assume each
component to be a file, where vi = {f1, ..., fk}. As such,
each instance of the mined datasets represents a particular
file fj in a particular version vk of the software repository.

Given a particular software component, the classification
problem of defect prediction is to determine what is the
state of the said component - defective, or not. This state
is described as the label attached to each instance of dataset,
and it is dependent on the features used to train the classi-
fier, which are extracted from the source code of each one
of those instances. Consequently, one of the key aspects
to achieving a good performance while predicting the tar-
get state, is the choice of the features (Moser et al., 2008).
Product metrics and process metrics are the most widely ex-
plored categories, vastly studied in the earlier times of de-
fect prediction and they have generally showed positive re-
sults (Li et al., 2018). While the product metrics describe
the design and behaviour of the current state of the software
(eg. CK (Chidamber and Kemerer, 1994) and McCabe’s
cyclomatic complexity (McCabe, 1976)), the process met-
rics extract the features from historical information stored
in software repositories such as version control systems and
issue tracking systems(eg. churn (Nagappan and Ball, 2005)
and entropy metrics (Hassan, 2009)).

The typical approach for classification is the application
of supervised machine learning algorithms on the data. This
process begins with the generation of the datasets, in partic-
ular, by extracting the set of predictors from the components
of each version of the software repository and attaching the
corresponding defective information. For instance, in our
study, the predictors are the Designite smells and the tradi-
tional smells used in the literature. Hereafter, the dataset is
processed, accounting for missing values and scaling abnor-
malities in the data, and it is split into a training and a test-
ing dataset. The training dataset is used as input to a learn-
ing algorithm, which outputs a classification model that pre-
dicts for a new un-labeled instance whether it is defective or
not. After the creation of the classifier, the testing dataset is
used to evaluate the model’s performance by comparing the
predicted classification against the actual classification. On



the whole, the goal of the classification model is to define a
mapping between the features and the target label.

To extract the target label from the software repositories,
i.e. the defective information, we rely on the Jira issue track-
ing system and the Git version control system. Jira records
all reported bugs and tracks changes in their status, associ-
ating each defect with an unique issue ID. Git tracks every
modification done in the source files, to which it is a com-
mon practice for developers to associate the corresponding
issue ID in the commit message. Therefore, we map the
defective information of each file, in each commit, by as-
sociating the issue ID from both the commit message that
fixed the defect and the reported defect in the issue track-
ing system. In the end, we label each file in the version as
defective when there is a defect fixing commit that modifies
the file, thus we assume that a file is fully defective if it was
just modified in a fixing commit.

In the context of defect prediction, code smells have been
shown to be both positively correlated with software de-
fects and have been shown to positively influence the per-
formance of defect prediction models used as features. (Pi-
otrowski and Madeyski, 2020). As such, in the next section
we introduce the topic of bad code smells.

3.2 Bad Code Smells
Bad Code Smells are defined as patterns in the source code
that imply deeper problems in the system (Fowler, 2019).
Their method of detection is based on the violations of
fundamental design principles, that negatively impact de-
sign quality. As such, they imply weaknesses in the de-
sign, which, although not technically incorrect, may lead to
a slower development and increase the risk of defect pro-
duction. Consequently, they can contribute to the accu-
mulation of technical debt, which can lead to a technical
bankruptcy, rendering the project unmaintainable, thus hav-
ing to be abandoned in the end (Suryanarayana et al., 2015;
Tufano et al., 2015).

Traditional Code SmellsIn the literature, the most com-
mon smells are those proposed by Fowler et al. (Fowler,
2019) and Brown (Brown, 1998). Fowler et al. (Fowler,
2019) was the one to introduce the notion of code smells.
Their main purpose was to determine when should the de-
veloper do a specific code refactoring. As such, they defined
22 representations of code smells, each associated to a set
of refactoring methods. For example, the Shotgun Surgery
smell occurs when, during a change, the developer needs to
do several small changes on different classes. This makes
them harder to find, thus making it easier to miss an impor-
tant change. Furthermore, Brown proposes a list of negative
patterns that cause development roadblocks and categorised
them for the different roles of software development: man-
agement, architectural, and development. Brown’s main
motivation is to accurately describe commonly occurring
situations, their consequences and solutions, related to three
perspectives. As an example, the Swiss Army Knife is
a management perspective anti-pattern that describes the
overdesign of interfaces. It results in objects with numer-
ous methods that attempt to anticipate every possible need,
thus leading to designs that are harder to comprehend, use
and debug.

However, since the smells defined by Fowler and
Williams are only conceptual descriptions of the patterns,
other works make effort to define formal methods of detec-
tion based on their description. The main idea is to define

rules using code metrics, define associations between them,
and set thresholds. Moreover, because the thresholds are
qualitatively defined (e.g. few), a common approach is to
get the distribution of values and assign quantiles to each
qualitative threshold. As a consequence of the definition of
rules, several tools have been developed to the extraction of
smells. In our study, we used the Organic Project1 which
is based on Bavota et al. rules (Bavota et al., 2015). We
also used DECOR rules to detect smells and adapted it to
work with Java files (Moha et al., 2010). In the end, we ex-
tracted 20 smells to represent the traditional smells used in
the literature.

Designite Code Smells The smells we are studying were
proposed by Ganesh et. al (Ganesh et al., 2013). They pub-
lished a comprehensive catalog of 31 design smells, classi-
fied based on the violation of one of the four fundamental
OO design principles. Their main motivation was the lack
of common ground for the definition of smells, since while
some treated a smell as a problem itself, others considered
it to be an indicative of a deeper problem. Therefore, their
goal was to create a framework that defines a taxonomy for
all documented smells and to organize them under the per-
spective of the violation of a design principle. They base
those violations on the fundamental design principles from
the four major elements of the "object model" defined by
Booch et al. (Booch and Booch, 2007): abstraction, encap-
sulation, modularity, and hierarchy. With this, Sharma de-
veloped Designite (Sharma, 2018), a code assessment tool
written in Java that detects 17 of the design smells men-
tioned above.

In summary, we used bad code smells as features for de-
fect prediction. We considered 20 smells commonly used
in the literature as our baseline, extracted using the Organic
and DECOR rules. We, also, considered 17 smells from
Designite 2 to which we are studying whether it increases
the defect prediction performance. Therefore, for each in-
stance of the training dataset, we ended up with 37 boolean
features, each describing whether it was detected or not in
the particular file. Take notice that since we used different
tools to extract the smells, we merged the results from the
different tools by the name of the file, thus, for missing files
(instances), we assumed that none of smells were detected,
so we defined the respective instance smells values to False.

4 Evaluation Methodology
Our research goal is to study the impact of Designite smells
in defect prediction. Therefore, we designed our study
to empirically compare the performance of defect predic-
tion classifiers trained with the Designite smells against the
smells traditionally used in the literature. As such, we eval-
uate the different models trained with both categories of
smells individually, and then with the combination of the
different features by applying feature selection techniques.
With this in mind, we defined the following research ques-
tions.

RQ .1: Do defect prediction models trained with
Designite code smells outperform those trained
with traditional code smells?

1https://github.com/opus-research/organic.git
2The list with all the smells used in this study and their descrip-

tion will be available after the paper’s publication.



RQ .2: Do Designite code smells contribute to the
performance of models trained with traditional
code smells?

RQ .3: Which combinations of code smells and
metrics outperform the defect prediction models?

We divide this section following the same approach, com-
monly used in defect prediction studies. As such, we start by
collecting the data from repositories, which includes smells,
metrics and defects information. Then, we apply feature
selection whose purpose is to examine which features influ-
ence the best the defect prediction. Next, we train classifi-
cation models to predict defects based on several algorithms
and optimise them with hyper-parameterization. Last, we
cross-validate the models and evaluate them using different
classification metrics. Each step is represented by the fol-
lowing subsections.

4.1 Dataset Construction
The first step of our approach is to collect the data and to
generate the datasets required for training and testing of
the classifiers. Therefore, we start by iterating the versions
of each project and extract the defective information, i.e.
whether each file has defects or not, as well as the target
features.

Then, we preprocess the datasets for training, in particu-
lar, we handle the missing information, standardise the data
and deal with data imbalance. In the end, we split the data
into training and testing dataset, and split the training dataset
to account for the validation process.

Data Collection We collected the data from 97 projects3,
in particular we selected 5 versions from each project and
applied the feature extraction approach on a file granularity.
The criteria to select the versions is based on the ratio of
defects in each file, as such, we opt for versions with ratios
between 10% and 30% of defects, since it composes a good
representation of defects that reduces the class imbalance,
that is produced by the low number of defects, and it is not
an outlier, for instance, a version that was created just to fix
issues. The versions were selected from 97 Apache projects
written in Java, and they represent different populations in
regard to authors, number of contributors, number of com-
mits and release times. In the end, we collected features
from a high number of versions, representing a big diversity
of projects and a good representation of defects for each ver-
sion.

Extracting Defects After selecting the versions, the fol-
lowing step is to analyse the source code and collect the
features under study and target variable. As a first step we
identified which files are defective and which are not. In our
study, we assume that a file to be defective needs to have at
least one defect in it. We used the Jira tracker from Apache
to collect the defects information, thus mapping a boolean
value for each file asserting whether it is defective or not.
Using the Jira tracker is used in the previous step to calcu-
late the ratios in the version selection and, then used in this
step to define the target variable in the classification for each
file for all versions.

Extracting Designite Smells We extracted the main fea-
ture under study, by running Designite on the source code of
each version. It produces a mapping for each class where,

3The list with the information from the 97 projects used in this
study will be available from the paper’s publication

for every smell, it describes whether it was detected or not.
Therefore, we abstracted the class to file granularity and as-
sumed that if it was detected in a class, it was detected in the
file.

Extracting Traditional Smells We extracted the smells
commonly used in the literature for smell-based defect pre-
diction, by using Organic4 to analyse the existence of code
smells in the source code. This tool is an eclipse plugin
that detects 11 types of smells based on the rules imple-
mented by Bavota et al. (Bavota et al., 2015), consequently
we adapted and extended it to be able to detect all the smells
mentioned in the previous section. In the end, we were able
to detect 20 traditional smells both from class and method
granularity, therefore we inferred that if a method or a class
detects a smell, then the whole file detects it.

Feature Selection In addition to comparing the defect
prediction classifiers trained by each individual feature cat-
egory, we aim to explore the impact of the combination
of Designite code smells with the traditional code smells.
Therefore, we applied the previously defined approach on
the generation of datasets to the combination of the differ-
ent clusters of features. Hence, we trained classifiers with
both Designite smells and the traditional smells and applied
feature selection to study whether it improves the defect pre-
diction performance and to study which feature selection
methods selects the subset of features that produce the most
accurate defect prediction classifiers. Consequently, we ap-
plied the following three feature selection methods based
on univariate statistical tests, while selecting both 20 and
50 percentile of features: the chi-square test; the ANOVA
F-value; and the mutual information. In addition, we also
applied recursive feature elimination with 5 fold cross vali-
dation and based on the F1 Score.

Dataset Preprocessing From the generated datasets, we
applied preprocessing operations to prepare and split the
data to create the defect prediction classifiers. One of the
first required operations is to handle missing values, as such,
we dropped rows with missing values. Then, for the nu-
merical metrics, due to the high value ranges, we applied
the min max scaler to scale and translate each feature to a
range between 0 and 1. Since there is a higher ratio of non-
defective files than defective files, which is a common oc-
currence in defect prediction, we applied the SMOTE over-
sample technique to synthetically increase the ratio of de-
fective instances in the datasets. Lastly, we split the data
into a training and a testing dataset, in particular we allo-
cated the first four versions of the project to training and the
last version to testing.

Training Classifiers With the datasets generated from the
collection step we trained the defect prediction classifiers.
Because we are looking to assess the feature sensitivity of
Designite smells, we experimented with a large set of clas-
sifiers, and we applied hyper-parameterization with cross
validation to validate and select the classifiers and config-
urations with the best performances. Then we selected the
ten highest performance classifier configurations for each
dataset and train them, thus creating defect prediction clas-
sifiers for each dataset.

Since the goal of our study is to evaluate the impact of De-
signite smells, we trained several classifiers targeting differ-
ent categories of classification. The rationale is to focus on
the sensitivity of the features thus we explore a large num-

4https://github.com/opus-research/organic.git



ber of classifiers with different parameter configurations and
select the highest prediction scores. As such, we classify
with three statistical classifiers: Linear discriminant analy-
sis, quadratic discriminant analysis, and the logistic regres-
sion; and with a bernoulli naive bayes classifier; k-nearest
neighbours classifier; decision tree and a random forest clas-
sifiers; support vector machine; and neural network: a mul-
tilayer perceptron. For the practical application of these
classifiers, we used the scikit learning tool, which provides
support for each one of them.

We first applied a grid search with 10 fold cross valida-
tion on all the classifiers to find the best classifiers for the
target dataset and to optimize the parameters for higher per-
formance. We used F1 Score as the optimisation score, since
it is the most fitted for binary targets by its definition. To do
so, we used scikit learn’s GridSearchCV tool, which makes
an exhaustive search over the specified parameters for each
classifier we analysed. After obtaining the score for all the
combinations of parameter for each classifier, we selected
the ten configurations with the highest F1 Score for each
dataset. This way, we can reduce the number of classifiers
to be trained to the evaluation and comparison step, while
having a broad cover of different classifiers.

4.2 Data Analysis and Metrics
Having created the classifiers for each of the datasets, the
next step is to evaluate each trained model from each con-
figuration. Therefore, we calculated different metrics com-
monly studied in defect prediction and compared them to
analyse the features combinations we are evaluating. More-
over, since we took into account the ten optimal classifier
configurations in the previous step, to analyse the results,
we consider the best score from each dataset and we sum-
marise their scores by their average. The evaluation metrics
we calculated to measure the performance of each classifier
are: precision, recall, F1 Score, AUC-ROC and the Brier
Score. We discuss their rationale in the rest of the section.

Precision and recall are two widely used metrics in defect
prediction. They measure the relationships between specific
parameters in the confusion matrix:

precision =
TP

TP + FP
recall =

TP

TP + TN
(1)

where, TP is the number of classes containing defects that
were correctly predicted as defective; TN describes the
number of non-defective classes that were predicted as de-
fective; and FP is the number of classes where the classifier
fails to predict defective classes, by declaring non-defective
classes as defective. In addition to these scores, we cal-
culated the F1 Score which is the harmonic mean of both
precision and recall, defined as follows:

F1 = 2× precision× recall

precision+ recall
(2)

Moreover, we determine the Area Under the Curve
(AUC) of the Receiver Operating Characteristic curve. AUC
summarises the ability of the classifier to discriminate be-
tween defective and non-defective classes. As such, the
closer it is to 1, the higher the skill of the classifier to dis-
cern the classes affected or not by the defect. Nevertheless,
a score closer to 0.5 describes a classifier with a lower accu-
racy, thus having a classification ability closer to a random
classifier.

Furthermore, we evaluated the classifiers using the Brier
Score. This score measures the distance between the prob-
abilities predicted by a model and the actual outcome. Ac-
cordingly, the Brier Score is defined as follows:

1

N

N∑
i=1

(pc − oc) (3)

where pc is the predicted probability by the classifier and
oc is the actual outcome for the class c. Therefore the dis-
tance will be 0 if the class is not defective and 1 otherwise;
N is the total number of classes in the dataset. In the end,
a low Brier Score represents a good classifier performance,
while a high score represents a low performance.

5 Results
In this section, we discuss the obtained results focusing on
the research questions we initially defined. As such, we first
analyse the results of the models trained with each category
of smells, and then we analyse the results from the combi-
nation of all smells, including the subsets of smells.

To address RQ.1 we evaluated whether the performance
of our models trained with Designite code smells would out-
perform those trained with the traditional code smells. As
such we calculated the arithmetic mean and the standard de-
viation scores of all projects considering the best classifier
configurations.

In Figure 2 are illustrated the arithmetic means for all the
scores representing from the comparison between Designite
models and the Traditional models. We can observe that,
although, there is a slight improvement of its precision, we
can see that on the overall, the Traditional smells outperform
the Designite smells. Moreover, we are able to see that the
performances from Designite are low, for instance the AUC
measure is very close to the score of the random model.

Regarding RQ.2, we studied whether the performance of
the models trained with both smells sets will perform bet-
ter than any of the single categories. Since we saw that
the traditional smells outperform the models trained with
Designite smells, we will consider those as the baseline to
compare the combination of smells. Moreover, we will also
verify whether there is a subset of the combination of smells
resulting from the feature selection that can outperform the
models trained with all the smells.

Figure 2 also describes the arithmetic mean of the score
for the combination of smells. Overall, we can verify that
there is an increase in the performance of the combination
of both smells compared against the Traditional smells. This
is more prominent in the AUC metric, where we can see an
improvement of 5%. In particular, this difference is better
represented in the distribution presentation in Figure 1. The
figure illustrates a violin plot and a box plot for the com-
parison of the different scores: AUC ROC, the Brier Score,
and the F1 Measure, between the models trained with both
Designite and the Traditional smells, and those only trained
with Traditional Smells. The symmetric lines delineating
the violin plot represent the rotated probability density of
the score on all projects, i.e the score density distribution for
all projects. Moreover, the box plot describes a standardized
summary of the score for all projects through the minimum,
the maximum, the sample median, and the first and third
quartiles. In particular, the middle line denotes the range
from the minimum score to the maximum score, excluding
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the outliers which are represented as the dots. The upper and
the lower limit of the box define the upper quartile qn(0.75)
and the lower quartile qn(0.25) of the dataset. The middle
line represents the median of the scores qn(0.50) and de-
scribes the middle value of the dataset.

The precision and the recall also show better performance
for the combined smells. We can verify that the recall is
significantly larger than precision for both variables, with
results close to 76% for the combined smells. The arith-
metic mean of the F1 Scores is also better for the combined
smells, although not as significant in the distribution (Fig.
1). Lastly, the Brier Score is 4.6% lower for the combina-
tion of smells, which means that it has a higher performance
than the Traditional smells separately.

Regarding the distribution, the combined smells show a
normal distribution, while in the Traditional smells distribu-
tion the results are somewhat divided between higher scores
and lower scores. We can see that the lower scores in the
Traditional smells actually perform better than the peak of
the normal distribution of the combined smells. This could
imply two possible clusters in the projects that could be fur-

ther studied in future work. In the end, we can verify an
improvement of the performance of the models when both
Designite smells and the traditional smells are trained to-
gether.

Furthermore, we checked statistical significance with t-
test and confirmed that for all the scores, the models trained
with Designite and the Traditional smells combined, have
higher performances than the models trained with only Tra-
ditional smells, at a significance level of p < 0.05.

In regards to the RQ. 3, we applied seven different meth-
ods to identify the subsets of features with the best perfor-
mances. We observed that for the AUC ROC, feature se-
lection produced a slight improvement of the models per-
formances compared against the original models, with all
features of Designite and Traditional code smells. The best
selection is from the recursive elimination, with an improve-
ment of 0.6%, then the ANOVA F-value with 20 and 50 per-
centile had the respective improvements of 0.4% and 0.3%,
and lastly the mutual information with 50 percentile with
0.1% of improvement. Additionally, for the F1 Score, there
was also just a slight improvement over all the combina-
tions. The selection from mutual information with 50 per-
centiles increased the performance by 0.3%, followed by the
recursive elimination and the chi-squared test with 20 per-
centiles, with an increased performance of 0.2%. For the
Brier Score, there was an improvement of 3.6% when ap-
plied the chi-squared with 20 percentiles, followed by an
improvement of 1.6% with the smells selected from the mu-
tual information with 20 percentiles and an improvement
of 2.9% with the ANOVA F-value with 20 percentiles. In
the end, although there was an overall improvement when
applying feature selection, it was not significant compared
against using all smells.

In summary, the results from the study of the impact of
Designite smells in defect prediction are the following:

• The models trained with both Designite and the Tradi-
tional smells outperform the models trained with only
Traditional Smells on all scores, with a significant in-
crease of the AUC of 5% (p < 0.05).

• Applying feature selection to the combination of both
Designite and Traditional smells produce models with
a slightly higher accuracy than models trained with all



the smells. For instance, the Brier Score had the most
significant increase of 1.6% ∼ 3.6%

6 Conclusion
In this study we evaluated the code smells from Designite
as a predictor for defect prediction. As such we compared
with the models trained with smells taken from previous
studies (traditional smells). We extracted the smells from
97 projects and used a broad range of classifier algorithms
to train models with the Designite smells, the Traditional
smells and the combination of both. In the end we evalu-
ated and retrieved the scores from the best classifiers, and
compared the performance of the different smells.

The results showed that Designite code smells are not
good enough to be used for defect prediction on their own.
However, when used in combination with other traditional
smells used in the literature, they improve the performance
of the defect prediction compared against each individual
category. The current results suggest that for future work we
should study the impact of the different categories of Desig-
nite code smells. In addition, we should study the factors
that influenced the improved results for the combination of
Designite and the traditional smells, against each one of the
individual sets of smells.
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