
Waterline Fault Prediction and Maintenance

Ariel Gorenstein and Meir Kalech
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
Many water utilities employ proactive main-
tenance strategies in their waterline system to
prevent failures. These strategies make use of
a prediction model to detect the areas of the
network that are likely to fail, and replace the
areas with the highest probabilities. This pa-
per suggests an alternative replacement strat-
egy, which considers not only failure proba-
bilities of water mains, but also other factors
such as sending a team to the location and the
disruption to service during the replacement,
known as overhead costs. We prefer to replace
waterlines which are close to each other in or-
der to economize these overhead costs. We
propose a greedy approximation algorithm to
suggest an economical replacement strategy,
as well as optimal and sub-optimal heuristic
search algorithms. Evaluation on a real-world
waterline network shows that near-optimal so-
lutions can be effectively obtained in very fast
time, which can greatly reduce the mainte-
nance cost of the network.

1 Introduction
Waterline distribution networks experience thousands
of yearly failures, such as breaks, leaks and explosions.
Those failures cost a great amount of resources to the
water facilities, as not only the supply lines need to be
repaired, but also water is wasted and the distribution
service is interrupted. For that reason many water fa-
cilities put maintenance strategies to use, which aim to
replace likely-to-fail areas of the pipes in advance to
prevent the failures.

Those predictive maintenance strategies often em-
ploy a prediction model that can predict the likelihood
of each waterline segment to fail. Given those pre-
dictions, the facility should determine which segments
should be prioritized for replacement, assuming there
is a limited replacement budget. A naive replacement
policy would simply replace the few segments with the
highest failure probabilities.

Although such policy is likely to prevent the highest
amount of failures, it might not utilize the replacement
budget very effectively. The reason is that it is often
more lucrative to replace adjacent waterline segments,
because they can be replaced in a single replacement

action. For example, suppose that replacing a segment
is job that requires four workers. Hence if we want
to replace the three segments with the highest failure
probabilities, assuming they are in different locations,
we send four workers to replace each one and have to
pay for a total of 12 workers. However, if instead we re-
place three consecutive segments, with reasonably high
failure probabilities, we would only have to send seven
workers, because this replacement can be done as a sin-
gle replacement action. This would leave us with more
resources to replace more segments, and it is an in-
centive to take into account locations of segments in
addition to their failure probabilities.

Several approaches have been proposed to address
prioritizing waterline replacement. Kim et al. [3] model
the problem as a periodic replacement problem, where
the task is to find the optimal schedule for replacement
and is solved using Dynamic Programming. Choi et al.
[1] solve the problem using rank aggregation methods.
However, no previous work takes into account the loca-
tions of waterlines or their effect on maintenance cost
or policies.

Our approach aims to minimize both the cost of re-
placement and the expected fix cost, which is the cost
of failures in segments we do not replace. We break the
replace cost down into two types of costs: the material
cost - which increases linearly as we replace more seg-
ments, and the overhead cost - which increases slower
as we replace more adjacent segments - as explained
in the above example, and prompts to replace adjacent
segments. Our goal is to minimize the total mainte-
nance cost, which is composed of the sum of the mate-
rial cost, overhead cost, and expected fix cost.

We propose several approaches for that purpose. The
first one is a greedy approximation algorithm - which it-
eratively constructs the solution until it runs of replace-
ment budget. Although this algorithm is fast, the so-
lution it returns is not necessarily optimal. The second
approach utilizes heuristic search algorithms, specifi-
cally A*, Lookahead A*, and Weighted A*.

We evaluate the algorithms by running them on the
waterline network of Israel. The results show that
approximation algorithms return a solution very fast,
which is very close in terms of its cost to the optimal
solution. On the other hand, optimal algorithms take
longer to run, and their solutions provide little improve-
ment over the non-optimal algorithms.

2 Background and Related Work
Predictive maintenance refers to the task of prevent-
ing system malfunction by detecting components which
are likely to be faulty and replacing them in advance.
In the context of maintaining waterline networks, this
would mean generating predictions of segments which
are likely to fail, and using them to replace segments
in a way that would reduce the cost of maintenance as
much as possible.

Numerous methods have been suggested to priori-
tize replacement of watermains. In [4] five replacement
strategies for waterlines in NYC were simulated: four
strategies that replace segments that have had one, two
three and four faults respectively, and a do-nothing
strategy. Results show that the at-least-two-breaks pol-
icy is the one that yields the least costs. However, it is
advised not to use the same strategy across all domains,
since watermain networks with many large-diameter
pipes usually benefit economically from passive poli-
cies, while those that contain a lot of small-diameter
pipes usually benefit more from aggressive strategies.
This is due to the fact that diameter does not increase
by much the cost of fixing a pipe, but it does greatly
increase the cost of replacing it.

In another study [3] the task is modeled as a Markov
Decision Process (MDP) and solved optimally using a
Dynamic Programming (DP) algorithm. The MDP
model is constructed as follows: pipes are classified
to states according to a criterion such as total failure
count, and the transition probability between states is
obtained either via regression or via survival analysis.
The optimal solution for the replacement scheduling is
then obtained with a DP, which decomposes the prob-
lem into subproblems, solves them, and uses the solu-
tions to generate the overall result.

Choi et al. [1] model the problem as preference order-
ing and suggests a rank aggregation method for optimal
replacement given budget constraints. This approach
ranks watermains based on several criteria: reliability,
replacement cost, and number of households. Then,
a rank aggregation technique combines the rankings to
obtain a replacement policy. This demonstrates similar
performance to previous studies.

In conclusion, several studies have been proposed
which recommend replacement strategies for water-
lines. However, as far as we know, no paper has been
published which deals with situations where the re-
placement cost includes a a non-linear overhead cost.
This is the contribution we would like to propose in
our work.

3 Problem Definition
Our goal in this paper is to propose how to utilize fail-
ure probability predictions of waterline segments in a
given time range [0, T] in order to suggest an economi-
cal replacement policy. In this section we formalize this
task as the Expected Maintenance cOsT mInimizatiON
(EMOTION) problem. Then in Section 4 we present
several algorithms to solve this problem. To formalize
this problem, we first define a waterline segment.

Definition 1 (segment). a segment si is a tuple
〈i, ri, pi, fi〉, where i is the index of the segment within

the waterline, ri is the material cost of replacing the
segment, pi is the probability the segment would fail in
the time range [0, T], and fi is the cost of fixing the
segment in case it would fail.

The material replace cost and the fix cost of each
segment are determined by the operator, and can de-
pend on factors such as the segment’s length, material,
diameter, or other properties.

If there are two segments si = 〈i, ri, pi, fi〉 and
sj = 〈j, rj , pj , fj〉 such that j = i + 1 then si and
sj are considered adjacent segments. In addition, we
assume that all segments belong to the same pipe.
This assumption is needed to avoid situations where
there are several segments that have the same indexes.
We can justify this assumption in the following way:
suppose we have two pipes, p1 and p2, where p1 has
the segments s11, s12, . . . , s1n, and p2 has the segments
s21, s22, . . . , s2m. Then, we say that the segments of p1
have indexes 1, . . . , n, and the segments of p2 have the
indexes n+ 2, n+ 3, . . . , n+m+ 1.

We consider cases where the cost of replacing seg-
ments includes a submodular overhead cost in ad-
dition to raw material cost. This overhead could be, for
instance, due to the cost of sending a team to the loca-
tion and the cost of disruption to service. Every set of
consecutive segments to be replaced incurs an overhead
cost, and the cost increases with the number of consec-
utive segments. However, it increases in a concave way;
that is, the more consecutive segments we replace, the
less the cost increases. Intuitively, suppose replacing
100 meters of a waterline requires sending a truck and
three workers. Then replacing 100 meters in three dif-
ferent locations would result in a total of three trucks
and nine workers. However, replacing 300 consecutive
meters of a waterline only requires two trucks and five
workers. This gives us incentive to replace adjacent
segments. The function that defines the overhead cost
of replacing n consecutive segments, o(n), is increas-
ing and concave: its first derivative is positive and its
second derivative is negative.
Definition 2 (consecutive segments). we call a set
of segments S consecutive, if for each si, sj ∈ S, where
si = 〈i, ri, pi, fi〉 and sj = 〈j, rj , pj , fj〉, the following
holds: |i− j| < |S|.
For example, the set S = {s2, s3, s4} is consecutive,

but the set S = {s2, s3, s5} is not consecutive, because
5− 2 = 3 � 3 = |S|.

We call CONS the consecutive partitioning function,
which partitions a set of segments into consecutive sets.
Formally,
Definition 3 (consecutive partitioning function).
CONS(S) is a partition of S that satisfies ∀S′ ∈
CONS(S), S’ is consecutive: CONS : 2S → 22

S

.

For example, CONS({s2, s3, s5}) = {{s2, s3}, {s5}}.
Armed with this function we can formally define the
overhead cost.
Definition 4 (overhead cost). the overhead cost of
replacing n consecutive segments is given as o(n) =
n

n+a · h, where a and h are positive parameters. h de-
fines the amplitude of the function, and a determines
its gradient.

For example, suppose a case where a = 3 and h = 10.
Then we get the function o(n) = n

n+3 · 10. So replac-
ing one segment would cost o(1) = 1

4 · 10 = 2.5, and
therefore replacing three segments in three different lo-
cations would cost 7.5. However, replacing three adja-
cent segments costs only o(3) = 3

6 · 10 = 5. We can
clearly see the gain in this case.

By calculating the first and second derivatives of
o(n), it can be shown that this function is increasing
and concave. Note that this function could be changed
by the operator to any other increasing and concave
function, and all the algorithms and theorems in this
paper would be correct for that function too.

The overhead cost of replacing a set of (not necessar-
ily consecutive) segments S can be computed by using
CONS to partition S to sets of consecutive segments,
calculating the overhead cost of each one, and taking
the sum. We denote O for the overhead cost function
of a set of segments:

O(S) =
∑

S′∈CONS(S)

o(|S′|) =
∑

S′∈CONS(S)

|S′|
|S′|+ a

· h

Note that we use the function o(n) (lowercase o) for the
overhead cost of replacing n consecutive segments, and
O(S) (uppercase O) for the overhead cost of replacing
a set of segments S.
Definition 5 (replacement cost). the replacement
cost of a set of segments Sr, denoted as R(Sr), is the
sum of the material replace costs of the segments in
Sr with the overhead cost of Sr. Formally, R(Sr) =∑
si∈Sr

ri +O(Sr).

We assume we are given a replacement budget B that
constrains the amount we can spend on replacement.
Given the set of segments S and the replacement bud-
get B, our algorithms should propose which subset of
segments Sr to replace such that R(Sr) ≤ B.

The expected fix cost in the time range [0, T] of re-
placing the segments Sr ⊆ S is the cost of fixing the
segments not in Sr, and it depends on the failure prob-
abilities of those segments, pi and on their fix costs,
fi.
Definition 6 (expected fix cost). given a set of
segments S, the expected fix cost of replacing the sub-
set Sr ⊆ S, in the time range [0, T], is given as
F (S, Sr) =

∑
si∈S\Sr

pi · fi.

Finally, the expected maintenance cost, which is the
target function we aim to minimize, is the sum of the
replacement cost and the expected fix cost.
Definition 7 (expected maintenance cost). the ex-
pected maintenance cost of replacing a set of segments
Sr out of a set S in the time range of [0, T] is the com-
bined cost of the replacement cost of Sr with the ex-
pected fix cost of S and Sr:

M(S, Sr) = R(Sr) + F (S, Sr)

If we use the previous definitions we get:

M(S, Sr) =
∑
si∈Sr

ri+
∑

S′∈CONS(Sr)

|S′| · h
|S′|+ a

+
∑

si∈S\Sr

pi·fi

Definition 8 (Expected Maintenance cOsT mIn-
imizatiON Problem (EMOTION)). given a set of
segments S and the replacement budget B, EMOTION
problem aims to compute Sr ⊆ S such that M(S, Sr) =
R(Sr) + F (S, Sr) is minimal, and R(Sr) ≤ B.
Example: consider an EMOTION where S =

{s1, s2, s3, s4} and B = 60. The failure probabilities
of the segments are 0.3, 0.05, 0.25, 0.25 respectively. All
four segments have material replace cost ri of 15 and
fix cost fi of 100. Also, a = 1 and h = 30. Suppose
we choose to replace s1 and s2. That is, Sr = {s1, s2}.
The raw material cost of this replacement is 30, since
both s1 and s2 have material cost of 15. The overhead
cost would be o(2) = 2

2+1 · 30 = 20, since the two seg-
ments being replaced are adjacent. Therefore the total
replacement cost is 50, which is within the budget con-
strains. The expected fix cost is the sum of the failure
probabilities of s3, s4 multiplied by their fix cost: So
F (S, Sr) = p3 · f3+ p4 · f4 = 0.25 · 100+0.25 · 100 = 50.
Finally, the expected maintenance cost is the sum of
replacement and expected fix costs: 50 + 50 = 100.

4 Algorithms
We propose several algorithms to solve this optimiza-
tion problem. The first one is a greedy approximation
algorithm (Section 4.1), and the second set includes
heuristics search based algorithms (Section 4.2).

4.1 Greedy Algorithm
This is a greedy approximation algorithm, which con-
structs the solution by adding a single segment at a
time. Each iteration, the segment that improves the
expected maintenance cost the most is added. The al-
gorithm stops when the replacement budget runs out,
or when it reaches a state where adding more segments
to the solution does not benefit the expected mainte-
nance cost.

Although the solution returned by this algorithm is
not necessarily optimal, its advantage is its polynomial
runtime. During each iteration of the algorithm we
have to run through all segments not yet in the solu-
tion, and for each one compute the difference in the
expected maintenance cost between the solution with-
out the segment and the solution with the addition of
the segment. This takes O(n) time, where n is the num-
ber of segments in the network. The total number of
iterations can be bounded by n, since one segment is
added to the solution at each iteration. Hence the total
runtime of the algorithm is O(n2).

4.2 Heuristic Search Algorithms
By modeling the task of selecting the segments for re-
placement as a search problem, we can solve it opti-
mally using generic heuristic search algorithms. In or-
der to do so, we define how states are represented, the
transitions between states, the start and goal states,
and the heuristic function.

First we define a function T : 2S −→ 22
S

called the
transition function. For a set of segments Sr ∈ 2S ,
let si ∈ Sr be the segment in Sr with the highest
index. For sj /∈ Sr, denote Sr + sj = Sr ∪ {sj}.
Then T (Sr) = {Sr + sj | j > i ∧ R(Sr + sj) ≤
B ∧M(S, Sr + sj) < M(S, Sr)}. That is, T (Sr) are the

〈∅, 1〉

〈{s1}, 1〉

〈{s1, s2}, 1〉

〈{s1, s2}, 2〉

〈{s2}, 1〉

〈{s2}, 2〉

M(S, {s1})−M(S, ∅) + base

M(S, {s1, s2})−M(S, {s1}) + base

(maxN − 2) · base

M(S, {s2})−M(S, ∅) + base

(maxN − 1) · base

Figure 1: Example set space

subsets of segments that result in adding a segment sj
to Sr, which satisfy that the index of sj is larger than
the maximal index in Sr, and that this addition is af-
fordable with the budget, and that the addition reduces
the expected maintenance cost.

Next, we define SF = {Sr ⊆ S | T (Sr) = ∅}. That
is, SF contains the subsets of segments to which no
segments with a higher index can be added in a way
that would be affordable and that would reduce the
expected maintenance cost. Subsets in SF can be called
"final subsets", since no further segments can be added
to them.

Given SF , we define the state space as follows: for
every set of segments Sr, there is a state of the form
〈Sr, 1〉. In addition, if Sr is in SF , there is also a state
〈Sr, 2〉. This means that each subset of segments in
SF gets two states. Formally, the state space is (2S ×
{1})∪ (SF ×{2}). The start state is 〈∅, 1〉, and for all
S′ ∈ SF , 〈S′, 2〉 is a goal state.

For example, suppose S = {s1, s2} and that T (∅) =
{{s1}, {s2}}, T ({s1}) = {{s1, s2}}, T ({s2}) = ∅,
T ({s1, s2}) = ∅. Then SF = {{s2}, {s1, s2}}. Fig-
ure 1 shows the state space in that case. Each circle
represents a state, and double circles are goal states.
〈∅, 1〉 is the start state.

Next we define transitions between states. Let 〈Sr, k〉
be a state.
• If k = 2 then 〈Sr, k〉 is a goal state, so there are

no transitions from it.
• If k = 1 and Sr /∈ SF : for each S′

r ∈ T (Sr), there
is a transition from 〈Sr, 1〉 to 〈S′

r, 1〉. The cost of
the transition is M(S, S′

r)−M(S, Sr)+base, given
that base = pmax ·fmax, where pmax is the highest
failure probability among all segments and fmax

is the highest fix cost among all segments. Since
by the definition of T (Sr), M(S, S′

r) < M(S, S′),

the addition of base is needed to ensure positive
transition costs. When adding a segment the ex-
pected maintenance cost can decrease by at most
pmax · fmax, and therefore adding base guarantees
that transition costs are not negative.

• If k = 1 and Sr ∈ SF : there is a single transi-
tion from 〈Sr, 1〉 to 〈Sr, 2〉 (which is a goal state).
The cost of the transition is (maxN − |Sr|) · base,
where maxN is an upper bound on the number
of segments that any solution can possibly have.
It can be calculated as the largest value of n such
that rmin · n + n

n+a · h ≤ B (where rmin is the
lowest material replace cost among all segments).
Later, we explain the reason that we cannot define
〈Sr, 1〉 as the goal state and instead add another
transition from it to 〈Sr, 2〉.

The arrows in figure 1 display the transitions in the
above example, along with their costs.

A solution to the problem is a sequence of states
〈Sr0 , 1〉, 〈Sr1 , 1〉, 〈Sr2 , 1〉, . . . , 〈Srm , 1〉, 〈Srm , 2〉, which
hold that Sr0 = ∅, Srm ∈ SF and for i =
1, . . . ,m : Sri ∈ T (Sri−1).

The cost of the last transition is (maxN − |Srm |) ·
base = (maxN − m) · base. The sum of costs of all
the other transitions is

∑m
i=1[M(S, Sri)−M(S, Sri−1

)+
base] =

∑m
i=1[M(S, Sri) − M(S, Sri−1

)] + m · base.
Since this expression includes a telescopic sum, it can
be simplified to M(S, Srm) −M(S, Sr0) + m · base =
M(S, Srm) − M(S, ∅) + m · base. When we add the
cost of the final transition we get that the total cost
is M(S, Srm)−M(S, ∅) +maxN · base. The only non-
constant in this expression is M(S, Srm). Therefore a
solution with minimal cost ensures that the resulting
Srm would be of minimal expected maintenance cost.

The reason that we cannot define 〈Srm , 1〉 as the
goal state and instead add another transition from it
to 〈Srm , 2〉 is to ensure the the solution is optimal. If
we remove the last edge, the cost of the solution would
be M(S, Srm) −M(S, ∅) + m · base. Since this value
is dependent on m, it may cause the search algorithm
to favor short solutions over long ones, and return a
solution that is not optimal in terms of expected main-
tenance cost. For that reason we add another edge of
cost (maxN − |Srm |) · base to remove this dependency.

The only thing left to define is the heuristic function.
Given a state 〈Sr, k〉, this function should underesti-
mate the cost from this state to any goal state.
• If k = 2, then this a goal state and its heuristic

value is 0.
• If k = 1 and Sr ∈ SF , we know the cost to the goal

state exactly: (maxN − |Sr|) · base.
• If k = 1 and Sr /∈ SF : Let 〈Sr′ , 2〉 be the clos-

est goal state. The cost to get to this state is
M(S, Sr′)−M(S, Sr)+base·(maxN−|Sr|). There-
fore we need to find a lower bound on M(S, Sr′) =
R(Sr′) + F (S, Sr′). We will bound each of those
two parts separately. Bounding R(Sr′) is easy:
we know it’s at least R(Sr). In order to bound
F (S, Sr′) we can find an upper bound on the addi-
tional number of segments that can added to the
solution, and adding that many segments with the
highest failure probabilities and fix costs. Let b

be the remaining budget: b = B − R(Sr). Let
si be the segment in Sr with the highest index.
The way we can add the largest possible amount
of segments to Sr without exceeding the budget
is by adding segments adjacent to si and assuming
their replace cost is the lowest among all segments.
Let Ci ∈ CONS(Sr) be the consecutive set that
includes si, and denote c = |Ci|. If we add n seg-
ments adjacent to si, then the additional cost we
pay is at least rmin · n+ o(c+ n)− o(c). We select
the largest n such that this value does not exceed
b. Afterwards, we add to Sr the n segments with
indexes larger than i that have the highest pi · fi.
Let S+

r be the resulting set. Then we know that
F (S, S+

r) ≤ F (S, Sr′).
Now that the search problem is defined, we can solve

it with heuristic search algorithms. The algorithms we
use are A* [2], Lookahead A* [6], and Weighted A* [5].
A*: The algorithm maintains an open list, initialized

with the start state, and a closed list, initialized as
the empty set. Every iteration, the algorithm extracts
from the open list the node n with the minimal f(n) =
g(n) + h(n) value, where g(n) is the cost of the best
path found so far from the start state to n, and h(n)
is the heuristic value of n. n is added to the closed
list and all of its children are added to the open list.
When a goal state is extracted from the open list, the
algorithm stops, and that state is guaranteed to be the
optimal solution.
Lookahead A* (LA*): This is an optimal algo-

rithm based on A*, with the main difference being that
every time a state n is chosen for expansion, a depth
first search is performed from n down to a threshold of
f(n)+k, where k is a predefined constant. The motiva-
tion is that if a goal state is found during the depth first
search, the search might be able to terminate sooner.
We chose to use 3 for the value of k.
Weighted A* (WA*): This algorithm is identical

to A*, except that it boosts the heuristic value of all
states by a constant w. This increase helps the algo-
rithm find the solution faster. The downside is that
this may cause the heuristic to become not admissible
which results in a non optimal solution. However, the
cost of the returned solution is guaranteed to be at most
w times the cost of the optimal solution [5]. We used a
small value of w = 1.0625. This was enough to increase
the speed of the algorithm significantly without much
loss to the quality of the solution.

5 Evaluation
In this section we present experimental evaluation
to examine the properties of the suggested methods.
In particular we would like to address the following
research questions:

RQ1. How parameters such as replace cost, overhead
cost and fix cost affect the gaps in runtime between the
algorithms?
RQ2. How parameters such as replace cost, overhead
cost and fix cost affect the gaps in solution cost between
the algorithms?
RQ3. Which of the optimal search algorithm has the
best performance?

5.1 Experiment Setup
We used the water network of Israel which contains 417
pipes with a total length of 1747 km. The overall fault
count of all pipes during a 39 month period is 2095. We
divided the pipes into segments of 400 meters each, to
a total of 4577 segments. Throughout the experiments,
we assumed that all segments have a uniform material
replace cost r and a uniform fix cost f : ∀si ∈ S : ri = r
and fi = f .

We used the Random Forest Regression algorithm to
predict the failure probability of each segment. We did
this by dividing the faults to three equal periods of 13
months each, that had 563, 797 and 735 faults respec-
tively. We trained the algorithm using the segments’
features, which include their physical characteristics
such as age and material, as well as their fault count
in the first period. We fit those features to the fault
counts in the second period. After the algorithm was
trained, we inputted the segment features and faults in
the second period to predict faults in the third period.
Finally, we normalized the results to the range of [0, 1]
so they predict failure probabilities rather than failure
counts. Given those predictions of failure probabilities
in the third period, our algorithms decide at the end of
the second period, which segments to replace.

We made an experiment for each of the following four
parameters: the number of segments in the network
(Segment Count), the material replace cost of the seg-
ments (r), the overhead coefficient (h), and the fix cost
of the segments (f). During the experiment of each pa-
rameter, we altered the value of that parameter while
fixating the others: segment count - 30, r - 12, h - 62, f
- 3000. We solved 20 random instances of each setting
using the following algorithms: Greedy, A*, LA*, WA*
and Baseline. Baseline is a simple algorithm that sorts
the segments by their failure probabilities in descending
order and replaces segments from the top of the result-
ing list until the budget runs out. We measured the
average time it took each algorithm to solve those 20
instances, as well as the average expected maintenance
cost.

5.2 Results
Results of the experiment are shown in figures 2-5.
Each of the figures corresponds to one of the four pa-
rameters: segment count, replace cost (r), overhead
cost (h) and fix cost (f). The figure that corresponds
to each parameter describes the experiments where that
parameter was altered, while the rest of the parameters
were fixated. The left side of each figure displays the
expected maintenance cost results, and the right side
displays the runtime results. The results show a graph
for each of the algorithms: Greedy, A*, LA*, WA* and
Baseline.

Since A* and LA* are both optimal algorithms and
the solutions of both always have the exact same ex-
pected maintenance cost, their graphs in the expected
maintenance cost results overlap. Also, Baseline over-
laps with Greedy in the time results, because both have
very similar runtime.

In Figure 2 we can see the expected maintenance
cost results and the runtime results of the algorithms
for segment counts between 30 and 60. Naturally, both

30 40 50 60
1,800

2,300

2,800

3,300

3,800

4,300

4,800

Segment count

E
xp

ec
te
d
m
ai
nt
en
an

ce
co
st

A*

LA*

WA*

Greedy

Baseline

30 40 50 60
0

100

200

300

400

500

Segment count

T
im

e
[S
ec
on

ds
]

A*

LA*

WA*

Greedy

Baseline

Figure 2: Segment count results.

10 12 14 16
1,600

1,700

1,800

1,900

2,000

2,100

2,200

2,300

Replace cost (r)

E
xp

ec
te
d
m
ai
nt
en
an

ce
co
st

A*

LA*

WA*

Greedy

Baseline

10 12 14 16
0

4

8

12

16

20

Replace cost (r)

T
im

e
[S
ec
on

ds
]

A*

LA*

WA*

Greedy

Baseline

Figure 3: Replace cost results.

50 56 62 68
1,700

1,800

1,900

2,000

2,100

2,200

Overhead cost (h)

E
xp

ec
te
d
m
ai
nt
en
an

ce
co
st

A* LA*

WA* Greedy

Baseline

50 56 62 68
0

4

8

12

16

20

24

Overhead cost (h)

T
im

e
[S
ec
on

ds
]

A*

LA*

WA*

Greedy

Baseline

Figure 4: Overhead cost results.

2,000 3,000 4,000 5,000
1,300

1,800

2,300

2,800

3,300

Fix cost (f)

E
xp

ec
te
d
m
ai
nt
en
an

ce
co
st

A*

LA*

WA*

Greedy

Baseline

2,000 3,000 4,000 5,000

0

3

6

9

12

15

Fix cost (f)

T
im

e
[S
ec
on

ds
]

A*

LA*

WA*

Greedy

Baseline

Figure 5: Fix cost results.

the solution cost and the runtime of all algorithms in-
crease as the number of segments in the network in-
creases. However, it is clear that the runtime of A* and
LA* increases much faster than the runtime of WA* or
Greedy, which are much more scalable. Also, it is ev-
ident that although the approximation algorithms re-
turn non-optimal solutions, the cost of their solutions
is very close to the optimal cost.

Figure 3 corresponds to the material replace cost of
the segments. As for the runtime, which decreases as
the cost increases, the reason is natural: when the cost
of replacing segments becomes high, the replacement
budget allows to replace less segments, and hence the
depth of the search tree decreases. As for the expected
maintenance cost, we can see that the lower the mate-
rial replace cost - the greater the gap is between greedy
and A*. The reason is that with lower material replace
cost, the budget allows to replace more segments, which
gives the algorithms more solution options and there-
fore more room for error for non-optimal algorithms.

In Figure 4 that displays the results for the overhead
cost, the runtime results show similar trends as in the
previous case: larger costs imply lower time, due to
the reduction of the search tree depth. The expected
maintenance cost results show that the gap between the
greedy and optimal costs increases with the overhead
cost. The reason is that when the overhead cost is high,
it is more meaningful to consider locations of segments.
Optimal solutions in this case often include segments
which do not have very high failure probabilities, which
makes simple algorithms that mainly consider the prob-
abilities more prompt to make a mistake.

Finally, Figure 5 shows the results for the fix cost
parameter. As the cost increases, the gaps between
the expected maintenance costs also slightly increase
in favor of the optimal algorithms. With high fix costs,
algorithms that make a mistake and do not replace the
correct segments, pay more for failures. Concerning the
runtime results, we can see that higher fix cost means
faster runtime. This is due to the fact that when the
fix cost becomes significantly higher than the overhead
cost, there is less importance to the locations of the
segments being replaced, and more importance to their
probabilities, which makes finding the solution easier.

We can conclude that:
• Greedy is a very fast algorithm which usually re-

turns solutions with costs that are very close to the
optimal cost, and it always outperforms Baseline.
Regarding RQ2, the gap between the greedy solu-
tion cost and the optimal solution cost increases
as the overhead cost and fix cost increase, and it
decreases as the material replace cost increases.

• WA* is by far the fastest heuristic search algo-
rithm, and the solution it returns is better than
that of greedy in almost all cases. Unlike the other
search algorithms, its runtime increases very slowly
with the network size, and can therefore be used
on very large networks. Regarding RQ1, the run-
time gap between WA* and the other search-based
algorithm decreases as the material replace cost,
overhead cost, and fix cost increase.

• To answer RQ3, LA* is consistently faster than A*,
so we can conclude that enhancing A* with looka-

heads is beneficial to the runtime. Since adding
lookaheads does not chance the optimality of the
solution, LA* is better to use than A*.
• Although A* and LA* return optimal solutions,

their slow runtime makes them impractical on
large networks. In cases where finding the exact
optimal solution is not mandatory, it is better to
use faster algorithms such as WA* or greedy, which
return near-optimal solutions.

6 Conclusions and Future Work
We addressed the importance of proactive maintenance
in waterline networks and the need to replace certain
segments in advance. We presented the task of mainte-
nance in cases where the replacement cost consists both
of raw material costs and of an additional submodlar
overhead cost that depends on adjacency of replaced
segments. We proposed several algorithms to prioritize
segment replacement, including a greedy algorithm and
heuristic search algorithms. Experimental results show
that it is important to consider adjacency of segments
during replacement and not only failure probabilities,
and often it is more lucrative to replace adjacent seg-
ments even if they do not have the highest probabilities.

Future work will focus on developing an additional
algorithm that utilizes the submodularity property of
the expected maintenance cost function. There are ex-
isting polynomial time algorithms that can optimally
minimize submodular set functions without constrains.
Since we have the budget constraint we cannot use
those algorithms directly, but we would like to mod-
ify them to propose an approximate algorithm. In ad-
dition, we intend to theoretically analyze the greedy
algorithm, in order to find bounds on its solution cost,
and identify properties of networks on which it returns
a non-optimal solution.

References
[1] Go Bong Choi et al. “A prioritization method for

replacement of water mains using rank aggrega-
tion”. In: Korean Journal of Chemical Engineering
34.10 (2017), pp. 2584–2590.

[2] Peter E Hart, Nils J Nilsson, and Bertram
Raphael. “A formal basis for the heuristic deter-
mination of minimum cost paths”. In: IEEE trans-
actions on Systems Science and Cybernetics 4.2
(1968), pp. 100–107.

[3] Jong Woo Kim et al. “Dynamic optimization of
maintenance and improvement planning for wa-
ter main system: Periodic replacement approach”.
In: Korean Journal of Chemical Engineering 33.1
(2016), pp. 25–32.

[4] James W Male, Thomas M Walski, and Adam H
Slutsky. “Analyzing water main replacement poli-
cies”. In: Journal of Water Resources Planning and
Management 116.3 (1990), pp. 362–374.

[5] Ira Pohl. “Heuristic search viewed as path finding
in a graph”. In: Artificial intelligence 1.3-4 (1970),
pp. 193–204.

[6] Roni Tzvi Stern et al. “Using lookaheads with op-
timal best-first search”. In: Twenty-Fourth AAAI
Conference on Artificial Intelligence. 2010.

