
Distributed Diagnosis of Multi-Agent Plans

Avraham Natan and Meir Kalech
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
We live in an era in which many multi-agent
systems (MAS) exist, such as autonomous ve-
hicles, automatic warehousing, trains, etc. In
many of these systems, as Amazon warehouse
robots, agents are assigned to operate tasks
and to this end they should plan their next
steps. To achieve a plan to the MAS, the
agents are required to coordinate their indi-
vidual plans. This is known in the literature
as multi agent plan (MAP). Typically, such
systems are prone to failures due to variety of
reasons, such as mechanical malfunctions or
software bugs. When a failure occurs, there
is a need to diagnose it to identify the faulty
agents. This problem has been traditionally
addressed in a centralized manner, where the
agents in the system share their plans and ob-
servations with a centralized diagnosing agent.
However, in some systems, an agent might
not be interested to share its information (e.g.
its plans), for privacy reasons. To address
this challenge, we propose Distributed Diag-
nosis of Multi-Agent Plans (DDMAP) algo-
rithms, which identify the root cause of fail-
ures in MAP in a distributed manner, where
the agents do not have to share their plans.
The contributions of this paper are (1) by for-
malizing DDMAP as a model-based diagnosis
problem, and (2) by presenting synchronous
and asynchronous distributed algorithms, in
which the agents coordinate to find the root
cause of the MAP failure, without sharing
information about their plans. Experiments
on simulated scenarios show that, the syn-
chronous algorithm performs better in terms
of run-time but not in communication effort.

1 Introduction
Multi-Agent Systems (MAS) can be found in wide va-
riety of applications, such as automatic warehousing,
autonomous vehicles, airport traffic management, lo-
gistics and public transport (such as train systems) [1].
Such applications help to improve commodity and effi-
ciency in a variety of different tasks. For example, the
amazon warehouses use an array of robots for auto-
mated relocation of items in the warehouse, often free-

ing manpower to focus on less trivial tasks. In many
of such system the agents follow a Multi Agent Plan
(MAP) in order to achieve a common goal. Very often
the agents follow a tightly scheduled plan with little
room for errors.

In such environment agents often share reusable re-
sources such as doorways, charge points, moving space
etc. In case where an agent experiences a fault, it may
result in holding a resource for longer amount of time
than intended, and creating a chain reaction of agents
failing to follow their original plans In some cases the
result of such scenario could be halting of a production
process, but in other cases it could be worse.

This raises the necessity to address any deviation of
the MAP as soon as possible. To address such fault, it
must be detected, isolated, and finally handled. In this
work we focus on isolating the faults by diagnosing the
faulty agents using Model-Based Diagnosis approach.

Previous works have already addressed the task of
diagnosing multi agent systems in variety ways, such
as diagnosing plan execution of agents [2, 3, 4] or di-
agnosing their behaviours [5, 6, 7, 8]. A recent work
[1] focuses on diagnosis of temporal multi agent plan
allocation (Tmara). This work assumes a centralized
diagnosing agent who observes the whole system and
receives the plans of the agents in the MAS in order
to compute a diagnosis. Such approach might not be
suitable for systems where the individual agents might
want to keep some level of privacy, and thus not will-
ing to share their plans. In such cases, submitting the
plans of the agents to a centralized diagnoser violates
the privacy of the agents. We propose a distributed
approach where the effort of computing a diagnosis for
the system becomes a joint effort of all the agents in the
MAS. The agents collaborate by sharing enough infor-
mation to achieve a diagnosis while keeping as much
information as possible for privacy reasons.

To this end, in this work, we present a twofold dis-
tributed model-based diagnosis approach. First each
agent finds a local diagnosis by modelling the system
in terms of model-based diagnosis. Then, the agents
collaborate by applying algorithms inspired by DisCSP
algorithms [9] to find consistent global diagnosis. We
present two algorithms, one synchronous and one asyn-
chronous. Both algorithms are sound, complete, and
anytime.

We evaluate our algorithms through consistent sce-
narios in a simulation of MAP. We found that increas-

ing the number of agents in the system, as well as the
length of the plans of the agents, increases the runtime
and communicated information. Surprisingly, we found
that the synchronous algorithm outperforms the asyn-
chronous algorithm in terms of run time, but not in the
amount of communicated information.

2 Related Work
Diagnosis of multi agent system failures has been stud-
ied in previous works. Several approaches have been
proposed for diagnosing failures in multi agent systems.
In this section we survey those prior works.

We first cover works which are related to the diagno-
sis problem in multi-robot systems plans. Roos and
Witteveen [2] introduced a model where partial ob-
servations of plan states are compared with predicted
states based on normal plan execution. Extending their
notion, de Jonge et al. [3] introduce the use of model-
based diagnosis in primary and secondary plan diag-
nosis which identify the incorrect execution of actions,
and the root cause of these faulty actions, respectively.
Micalizio and Torasso [4] address the problem of agent
diagnosis, aiming to find the faulty agents. Elimelech
et al. [1] propose a model based approach to diagnose
resource usage failures in multi agent systems in which
the diagnosing agent doesn’t have access to the multi
agent plans but instead can access a temporal resource
allocation plan. They model the diagnosis problem as
a set of constraints over the usage of the resources.

We next cover works which are related to the diagno-
sis of coordination faults. Early works in this subject
depicted centralized architectures. For instance, Mi-
calizio et al. [5] have utilized causal models of failures
and diagnoses to centrally detect and respond to single-
robot failures and to multi-robot coordination failures.
Kalech et.al. tackle the problem of diagnosing coor-
dination faults. Continuing with their centralized ap-
proach [6], they introduced a distributed, model-based
coordination-failure diagnosis approach [7]. In their
work, the coordination between the robots is modeled
as a constraint graph. The following year, Kalech and
Kaminka [8] introduced a novel design, using the term
“social diagnosis” to describe the process that diagnoses
the reason why robots disagree.

3 Problem Definition
In this section we formally define the Distributed di-
agnosis problem for multi-agent system (Distributed
Tmara-Diag). We first present the centralized diag-
nosis problem for multi-agent system (Tmara-Diag)
inspired by Elimelech et al. [1].

3.1 Centralized Tmara-Diag Problem
Agents in a group are assigned to operate tasks. The
tasks dictate resources usage for each agent in different
time steps, such that the resource usages of different
agents for a given time step do not overlap. To formal-
ize the timed resource allocation, we formally define
Temporal Multi-Agent Resource Allocation (Tmara):
Definition 1 (Tmara). Tmara is a tuple
〈A,R, T, plan〉 where A, R, and T are sets of
agents, resources and time steps, respectively, and plan

is a function A × T → R that maps an agent a ∈ A
and time step t ∈ T to the resource allocated to agent
a at time step t.

(a)

(b)

Figure 1: A simple example to demonstrate the
TMARA (left) and a TMARA-Diag problem (right)

In the example scenario in Figure 1, A is the set of
agents {a1, a2, a3}, R is the set of tiles {1, 2, ..., 9}, and
T = {0, 1, 2, 3} is the set of time steps. For every agent
ai ∈ A and time step t ∈ T the allocation function
plan(i, t) returns the tile that is planned for agent ai.

A malfunctioning agent may use different resource
than the one assigned to it by the Tmara. Such a de-
viation from the planned Tmara may result in more
than one agent simultaneously trying to use the same
resource. In that case, these agents may not be able to
continue their execution. This may cause a chain re-
action, where other agents that do follow their Tmara
are also unable to continue their execution, as the re-
sources allocated to them by Tmara are currently used
by other agents who could not continue their execution.
Eventually, this failed execution is revealed, at which
point many agents may be using resources that were
not allocated to them according to Tmara. We denote
by tobs this point in time in which the failure was de-
tected, and denote by robsi the resource used by agent
ai at time tobs.

Note that if an agent ai is using a different resource
than the one allocated to it at time tobs according to
Tmara, it does not mean that ai is faulty since ai may
have been forced to use this resource due to a failure of
another agent. For example, consider a3 in the scenario
from figure 1. Assume agent a1 was faulty at time step
3 and thus keeps holding its resource (tile 4) for the
next time step. This causes agent a3 to get stuck at
tile 5. The system is observed at time step tobs = 3,
with robs1 = 4, robs2 = 3, robs3 = 5. While agent a3 is
not using its resource as planned, in this scenario a1 is
the root cause to a3’s unplanned location.

We formalize the problem of identifying which of the
agents are faulty given Tmara as follows:
Definition 2 (Tmara-Diag Problem). A
Tmara-Diag problem is defined by the tuple
〈A,R, T, plan, tobs, {robsi}

|A|
i=1〉, where:

• 〈A,R, T, plan〉 forms a proper TMARA.
• tobs ∈ T is the time the failure is discovered.
• robsi ∈ R is the resource occupied by agent ai when
the system is observed at time tobs.

A Tmara-Diag problem arises when there exists an
agent ai such that plan(i, tobs) 6= robsi .

A solution to a Tmara-Diag problem is a set of
pairs 〈ai, ti〉 of faulty agents and time steps, where each
pair indicates which agent was faulty and at what time.
Note that we do not assume that the failure is imme-
diately identified. Thus, tobs represents the time step
after the failure occurred when the system failure was
detected. In addition, there may be several candidate
solutions to a Tmara-Diag problem, where each can-
didate is a plausible explanation for the observed be-
havior.

Tmara-Diag assumes a centralized agent who
makes the diagnosis. This agent holds the the in-
formation about the agents’ plans and the observa-
tion. However, in this paper we discuss a distributed
form of Tmara-Diag, in which there is no central-
ized diagnosing agent but each agent has its own
plan and observation. Such approach relies on col-
laborative efforts between the agents, done in a dis-
tributed manner. Each agent solves part of the prob-
lem (Distributed Tmara-Diag), fed by information
from its fellow agents to reach a global solution to the
problem.

3.2 Distributed Tmara-Diag problem
In Distributed Tmara-Diag we assume that the
global plan Tmara is divided between the agents, giv-
ing every agent only its own local plan. We assume
that the plans, i.e., resource usages of different agents
for a given time step do not overlap.
Definition 3 (Local Tmara). Local Tmara for
agent ai is a tuple LTi = 〈A,R, T, plani〉 where A, R,
T are defined as in TMARA, and plani : T → R is a
function that maps agent ai to the resource allocated to
it at time step t.

Returning to the example scenario in figure 1, A,
R, and T are defined as in Tmara, and the function
plani(t) returns the resource that is allocated for agent
ai at time t. An agent could deviate from its Local
Tmara as a result of an internal fault or as a result
of other agent holding a resource that was allocated
for it at some time. In both cases, the agent may be
holding at the time of the observation a resource that
is not allocated to it. The problem of finding what
caused such a deviation is the Distributed Tmara-
Diag problem. Since we focus on a distributed diagno-
sis approach, every agent operates a diagnosis process
based on its own plan and observation. We define first
the diagnosis problem from the point of view of an in-
dividual Local Tmara .
Definition 4 (Local Tmara-Diag Problem). A
Local Tmara-Diag problem for agent ai is defined by
the tuple LTDi = 〈A,R, T, plani, tobs, robsi〉 where:
• 〈A,R, T, plani〉 forms a proper Local Tmara for
agent ai.
• tobs ∈ T is the time the failure was discovered.
• robsi ∈ R is the resource occupied by the agent ai
when the system is observed at time tobs.

A Local Tmara-Diag problem arises when
plani(tobs) 6= robsi .

A diagnosis to a Local Tmara-Diag problem for
agent ai is a pair 〈ai, t〉, which indicates that agent ai

was faulty at time t. In case that the diagnosis is that
agent ai is healthy the diagnosis is an empty set. Note
that there could be several alternative time steps that
could explain the unexpected observation. Each one
of them forms a diagnosis. We denote the set of com-
puted local diagnoses for agent ai as Di. dij denotes
the jth diagnosis of agent ai. To compute a diagnosis
the agent should communicate with its fellow agents. In
the next section we elaborate on algorithms to compute
the diagnoses. To complete the distributed diagnosis
definition, we define now the global diagnosis problem,
Distributed Tmara-Diag.
Definition 5 (Distributed Tmara-Diag Prob-
lem). A Distributed Tmara-Diag problem is de-
fined by a set of local diagnosis problems LT D =

{LTDi}|A|i=1. A Distributed Tmara-Diag problem
arises when ∃ai ∈ A, s.t. plani(tobs) 6= robsi .

A diagnosis to a Distributed Tmara-Diag prob-
lem is a union of the diagnoses of the Local Tmara-
Diag problems. This diagnosis forms a set of pairs
〈ai, ti〉 of faulty agents and time steps, where each pair
indicates which agent was faulty and at what time.

In the next section we show how to define Local
Tmara-Diag in terms of Model-Based DiagnosisMBD
and then we present two distributed diagnosis algo-
rithms to solve the Distributed Tmara-Diag prob-
lem.

4 Method Description
In this section we provide the required background for
Model-Based Diagnosis (MBD) (Section 4.1) to show
how Distributed Tmara-Diag problem can be for-
malized as an MBD problem (Section 4.2). Then we
present two distributed algorithms, one synchronous
and one asynchronous to diagnose the faulty agents
(Section 4.3).

4.1 MBD Background
MBD problems arise when the normal behavior of a sys-
tem is violated due to faulty components as indicated
by certain observations.
Definition 6 (MBD Problem). An MBD problem is
specified by the tuple 〈SD,COMPS,OBS〉 where: SD is
a system description, COMPS is a set of components,
and OBS is an observation. SD takes into account that
some components might be abnormal (faulty). This is
specified by the unary predicate h(·) on components such
that h(c) is true when component c is healthy, while
¬h(c) is true when c is faulty. A diagnosis problem
(DP) arises when the assumption that all components
are healthy is inconsistent with the system model and
observed system behavior. This is expressed formally
as follows: SD ∧

∧
c∈COMPS h(c) ∧ OBS ` ⊥

Diagnosis algorithms try to find diagnoses, which are
possible ways to explain the above inconsistency by as-
suming that some components are faulty.
Definition 7 (Diagnosis). A set of components 4
is a diagnosis if SD ∧

∧
c∈4 ¬h(c) ∧

∧
c/∈4 h(c) ∧

OBS 0 ⊥
There may be multiple diagnoses for a given DP. A

common way to prioritize diagnoses is to prefer minimal

diagnoses, where a diagnosis 4 is said to be minimal
if no proper subset 4′ ⊂ 4 is a diagnosis. A minimal
cardinality diagnosis is the smallest diagnosis in terms
of amount of components it contains. In this work we
focus on prioritizing diagnoses by their cardinality.

4.2 Distributed Tmara-Diag as an
MBD problem

We modeled Distributed Tmara-Diag as a set of
Local Tmara-Diag problems. In this section, we
model Local Tmara-Diag problem as anMBD prob-
lem. This means defining Local Tmara-Diag in
terms of SD, COMPS, and OBS. The system compo-
nents (COMPS) of agent ai represent pairs of agent and
time 〈ai, t〉, i.e. COMPS = {〈ai, t〉}|T |t=0. The observa-
tion (OBS) represents the resource occupied by agent
ai when the system is observed, i.e. OBS = {Robsi}.
SD represents the plans of agent ai as well as its con-
straints with other agents, such as two agents could not
occupy the same resource simultaneously, or that some
agent must occupy some resource at some time step.
Next, we define SD.

Defining SD
A healthy agent is expected to follow its plan according
to Local Tmara. Otherwise, it can be either faulty,
or in conflict with another faulty agent that blocks its
resource. Let us define four states an agent can be in
at a specific time step:
• Healthy state. The agent is healthy at the spe-

cific time step, and is able to advance to the next
step according to its Local Tmara.

• Faulty state. The agent is faulty at the specific
time step.

• Conflict state. The agent is healthy at the spe-
cific time step but it is not able to advance to the
next step according to its plan.

• Post-conflict state. The agent was in a conflict
state or post conflict state in the previous time
step.

An agent could be only in one of these states. To
formally define these states we first define the following
predicates and functions:
• h(ai, t), which is true if ai is healthy at time t.
• Use(ai, t, r), which is true if agent ai at time t uses

resource r ∈ R exclusively, i.e., no other resource
is used by ai at time t.

• UseP lanned(ai, t), which is true if agent ai uses
the resource allocated to it in the LTi for time t.

• Available(ai, t), which is true if the resource allo-
cated to agent ai for time t is not already used by
another agent.

• pstep(ai, t) : A × T → T , given an agent ai and a
time step t it returns the time step t′ according to
the Local Tmara of the resource currently held
by agent ai at time step t.

• pres(ai, t) : A × T → R, given an agent ai and a
time step t it returns the next resource r according
to the Local Tmara of the resource currently
held by agent ai at time step t

Each agent’s state can be formally defined as follows.

healthy(ai, t) = h(ai, t) ∧ UseP lanned(ai, pstep(ai, t))

∧Available(ai, pstep(ai, t) + 1)
(1)

faulty(ai, t) = ¬h(ai, t + 1) (2)

conflict(ai, t) = h(ai, t) ∧ UseP lanned(ai, pstep(ai, t))

∧ ¬Available(ai, pstep(ai, t) + 1)
(3)

postConflict(ai, t) = h(ai, t) ∧ (conflict(ai, t− 1)

∨ postConflict(ai, t− 1))
(4)

Note that the difference between equations 1 and 3 is
solely in the predicate Available, which means that the
resource that ai intends to use is either free, in a healthy
mode (1), or taken by another agent, in a conflict mode
(3). The first two parts of the equations are the same,
since in both at time t the agent is healthy and the
agent executed its plan up to time step t. Note that
the use of the function pstep is intended to address the
fact that it is possible that the agent has some delay
due to a fault in the past, and the planned resource is
delayed in some time.

We add a constraint stating that for every time step
t ∈ [0, tobs], it holds that only one state is active:

oneState(ai, t) = healthy(ai, t)⊗ faulty(ai, t)

⊗ conflict(ai, t)⊗ postConflict(ai, t)
(5)

Next, we define the corresponding models for the dif-
ferent states of the agents. Depending on the state an
agent is in, it can follow one of the four models outlined
below:

• Healthy model. A healthy agent uses the next
resource to the one that it is holding according to
its local plan.

• Fault model. A faulty agent continues to hold
the resource that it is currently holding.

• Conflict model. An agent that is in a con-
flict state continues to hold the resource that it
is currently holding, while another agent holds its
planned resource.

• Post-conflict model. An agent that is in a post-
conflict state continues to hold the resource that it
is currently holding.

We formally define the different models as such:

Φh(ai, t) = UseP lanned(ai, pstep(ai, t) + 1) (6)

Φf (ai, t) = Use(ai, t, r)→ Use(ai, t + 1, r) (7)

Φc(ai, t) = Use(ai, t, r)→ Use(ai, t + 1, r)

∧ ∃j 6= i s.t. : Use(aj , t + 1, pres(ai, t))
(8)

Φp(ai, t) = Use(ai, t, r)→ Use(ai, t + 1, r) (9)

Using the above definitions, we define the system de-
scription (SD) for the MBD problem that corresponds

to a Local Tmara-Diag problem as the conjunction
of the possible states over time:

SD =

|T |−1∧
t=0

((
healthy(ai, t)→ Φh(ai, t)

)
∧
(
faulty(ai, t)→ Φf (ai, t)

)
∧
(
conflict(ai, t)→ Φc(ai, t)

)
∧
(
postConflict(ai, t)→ Φp(ai, t)

))
4.3 Distributed Tmara-Diag

Algorithms
In this section we present the distributed algorithms
for solving the Distributed Tmara-Diag problem.
Each agent is solving its own Local Tmara-Diag
problem by modelling it to an MBD problem as defined
in section 4.2. This way the agents acquire their diag-
noses to the Local Tmara-Diag problems, or in short
local diagnoses. Those diagnoses, however, are not nec-
essarily equal to the global diagnoses of Tmara-Diag
problem. To compile a global diagnosis we present dis-
tributed algorithms inspired by DisCSP algorithms [9].
To this end each agent uses the diagnoses for its Lo-
cal Tmara-Diag problem to generate a set of beliefs
about its actual execution. It then communicates with
other agents to find in a joint effort sets of beliefs that
are consistent. These sets are compiled to global di-
agnoses. We present two distributed algorithms: one
synchronous algorithm, i.e., the agents communicate
in a sequence row to find a global diagnosis, and an-
other asynchronous algorithm, where the agents com-
municate simultaneously. We formally define the next
definitions, that will help us to present the algorithms:
Definition 8 (Belief). A Belief of agent ai is a se-
quence of resources bi = [rt0 , rt1 , ..., rtobs] denoting the
actual execution according to the local diagnosis corre-
sponding to this belief. We denote the set of ai’s beliefs
as Bi = {bij}

|Bi|
j=1.

A belief of an agent is corresponding with a certain
diagnosis. Assume, for instance, that one of the diag-
noses of agent ai is ∅ (i.e., healthy), then the corre-
sponding belief (i.e., actual execution), is its original
plan. However, in case that its diagnosis is that it is
faulty in a certain time, then its belief about its execu-
tion could not be equal to the original plan anymore.
Also, in case of a conflict, agent ai’s belief could not be
equal to its original plan, since another agent aj holds
one of the resources planed to ai. In this case agent
ai blames aj as the cause of this conflict. This blame
is defined next as the corresponding conflict cause to
agent ai’s belief.
Definition 9 (Conflict Cause). A Conflict
Cause issued by agent ai is a tuple cc = 〈aj 6=i, t, r〉 ∈
A × T × R imposing a constraint on agent aj s.t.
aj is expected to select a belief in which it is hold-
ing the resource r at time step t. ccij denotes the
Conflict Cause that corresponds to Belief bij , and
the set of ai’s conflict causes that correspond to Bi is
CCi = {ccij}

|CCi|
j=1 .

Each agent holds some beliefs of neighbouring agents
(not necessarily of all the neighboring agents). The set
in the next definition (Agents Belief View) essen-
tially contains the beliefs that neighboring agents of
agent ai shared with it.
Definition 10 (Agents Belief View). The
Agents Belief View of agent ai is a set of beliefs
ABVi ⊆ {bkjk

}|A|k=1 s.t. ∀bkjk
∈ ABVi ∧ k 6= i : bkjk

∈
Bk.

Each belief bij in an Agents Belief View has a
corresponding local diagnosis dij . We formally define
this set as an Agents Diagnosis View.
Definition 11 (Agents Diagnosis View). The
Agents Diagnosis View of agent ai that corresponds
to ABVi is a set of local diagnoses ADVi ⊆ {dkjk

}|A|k=1

s.t. ∀dkjk
∈ ADVi ∧ k 6= i : dkjk

∈ Dk.
We expect that an Agents Belief View of agent

ai, together with the agent’s current selected belief bij
will be consistent. A consistent Agents Belief View
confirms that for every two beliefs in ABVi ⊕ bij , they
do not occupy the same resource r at the same time
step t.
Definition 12 (Consistent Agents Belief
View). For a given ABVi of agent ai and its selected
belief bij , a Consistent Agents Belief View is a
set of beliefs CABV ⊆ ABVi ∪ bij that holds the con-
dition:

∀bkjk
, bk′

j
k′
∈ CABV, ∀t ∈ T : bkjk

[t] 6= bk′
j
k′

[t]

As mentioned in Definition 9, every belief bkjk
∈

ABVi, is corresponding with a conflict cause cckjk
.

Agents Conflict Cause View is a set of con-
flict causes that are corresponding with the beliefs in
Agents Belief View. This set essentially contains
the conflict causes that neighboring agents of agent ai
shared with it.
Definition 13 (Agents Conflict Cause
View). The Agents Conflict Cause View of
agent ai is a set of conflict causes ACCVi ⊆ {cckjk

}|A|k=1

s.t. ∀cckjk
∈ ACCVi ∧ k 6= i : cckjk

∈ CCk.
We expect that an Agents Conflict Cause View

of agent ai, together with the agent’s current selected
conflict cause ccij will be consistent with its corre-
sponding Agents Belief View and current selected
belief bij . A consistent Agents Conflict Cause
View confirms that for every conflict cause in ACCVi⊕
ccij , if it assumes that some agent holds resource r
at time step t, then if the belief of that agent is in
ABVi⊕ bij , it must indeed hold resource r at time step
t.
Definition 14 (Consistent Agents Conflict
Cause View). For a given ACCVi and ABVi of
agent ai and its selected belief and conflict cause
bij , ccij , a Consistent Agents Conflict Cause
View is a set of conflict causes CACCV ⊆ ACCVi ⊕
ccij that holds the condition:

∀t ∈ T, r ∈ R,∀cckjk
∈ CACCV : cckjk

= {k′, t, r}
⇒ ∃bk′

j
k′
∈ ABVi ⊕ bij ⇒ bk′

j
k′

[t] = r

Finally, we expect that the agent belief view (ABVi)
of agent ai will be consistent with its belief set (Bi).
Also we expect that the agent conflict cause view
(ACCVi) of agent ai will be consistent with its conflict
cause set (CCi). In case of inconsistency, we would like
to isolate the subset of (ABVi) that cause this incon-
sistency. We call this subset Nogood.

Definition 15 (Nogood). Given the Agents Be-
lief View ABVi, the Agents Conflict Cause
View ACCVi and sets of local beliefs and conflict
causes Bi, CCi of agent ai, a Nogood is a set ng ⊆
ABVi that confirms either of the next conditions:

• ∀bij ∈ Bi, bij ∪ ng does not form a Consistent
Agents Belief View

• ∀ccij ∈ CCi, ccij ∪ {cck} s.t. bk ∈ ng does not
form a Consistent Agents Conflict Cause
View.

We denote the jth recorded nogood of agent ai as ngij ,
and the set of recorded nogoods of agent ai as NGSi.

We next present the distributed algorithms.

Synchronous Diagnosis Algorithm (SYDIA)
The Synchronous Diagnosis Algorithm (SYDIA) as-
sumes a hierarchical relation between the agents, and
initializes the desired cardinality of the diagnosis to
zero, i.e., the desired diagnosis needs to have zero faulty
agents. It then starts with the first agent in the hierar-
chy choosing one of its local diagnoses. Based on this
diagnosis it selects its corresponding belief, and passes
the belief to the next agent in the hierarchy. The next
agent chooses one of its local diagnoses which is con-
sistent with the belief of the previous agent, selects its
corresponding belief, and passes it to the third agent in
the hierarchy, and so on. This process continues until
the last agent in the hierarchy approves a consistent
diagnosis with previous agents, at which point a global
diagnosis has been found. The algorithm terminates
once all global diagnoses for every cardinality in the
range [0, |A|] have been found.

Asynchronous Diagnosis Algorithm (ASYDIA)
Like the SYDIA, the Asynchronous Diagnosis Algo-
rithm algorithm (ASYDIA) also assumes a hierarchical
relation between the agents and also initializes the re-
quired cardinality to zero. Its way of finding sets of con-
sistent beliefs, however, is fundamentally different from
SYDIA. The algorithm starts with every agent selecting
one of its beliefs. Then the agents jointly reason about
their beliefs by exchanging of messages, while changing
their selected beliefs if it is required. Each agent keeps
its own Agents Belief View, Agents Conflict
Cause View, and Agents Diagnosis View which
includes the selected beliefs, conflict causes, and lo-
cal diagnoses that other agents sent, denoted as ABVi,
ACCVi, ADVi, respectively. Note that, due to the syn-
chronous nature of the algorithm, some agents might
have those sets outdated. This may put a difficulty
on agreeing on a Consistent Agents Belief View.
To address this, each agent may mark some subsets of
its ABVi as a Nogood, or a set of beliefs that cannot
be part of any future Consistent Agents Belief
View. This allows the algorithm to focus the search of

a Consistent Agents Belief View. Since this al-
gorithm does not search for Consistent Agents Be-
lief View sequentially along the agents (as SYDIA
does), it cannot assume that it will go over all possible
belief sets in some order. To address this, each time
a Consistent Agents Belief View is found, the
agents mark it as a new nogood, forcing the algorithm
to prune this Consistent Agents Belief View and
explore other belief sets, and thus making it possible to
find every viable Consistent Agents Belief View.
When each Consistent Agents Belief View of the
required cardinality is found, the algorithm raises the
required cardinality by one and starts over. The algo-
rithm terminates once all global diagnoses for every re-
quired cardinality in the range [0, |A|] have been found.

5 Evaluation
In this section we present experimental evaluation to
examine the properties of the suggested methods, such
as the number of agents and the cardinality of the
faults.

5.1 Experiment Setup
Our experiments were performed on a simulation of
Distributed Tmara-Diag problems inspired by the
example presented in Figure 1. In order to simplify the
experiments, we make the next assumptions: (1) the
agents move on a board of 12×12 tiles, which represent
the resources, (2) the agents can advance to neighbour
tiles only by moving left forward or right, (3) an agent
does not visit a tile it has been visited previously, (4)
each agent can occupy a single tile at a time (meaning
that it holds one resource at a time), and (5) a faulty
agent executes a single faulty action during its execu-
tion, for a single time step.

The generation of the Distributed Tmara-Diag
problems consists the following stages:
1. Set the number of agents and the length of the

agents’ plans.
2. Generate Local Tmara for each agent, such that

the agents’ Local Tmara are consistent with
each other.

3. Choose a subset of agents to be faulty.
4. Simulate the agents’ execution while considering

the faulty agents as follows:
• A faulty agent randomly chooses at which

time step it will be faulty. Up to this time
step it follows its Local Tmara, then it is
stuck for a single time step, and then contin-
ues to follow its Local Tmara in a delay of
one time step.

• A healthy agent follows its Local Tmara as
long as its resource is not being used by an-
other agent (a conflict). If it is used then it
keeps holding its current resource up to the
observation time.

The set of resources each agent is holding at the last
time step (tobs) forms the observation of the generated
Distributed Tmara-Diag problem.

We generated Distributed Tmara-Diag problems
for varied number of agents (2-10), time steps (2-10)

and faulty agents (1-5). We conducted 20 tests for each
possible combination of values for those parameters, for
a total of 2500 tests. We measured the runtime required
for the different algorithms to solve the problem, the
communication efforts of the different algorithms, the
runtime required to reach the first diagnosis, and the
amount of information units sent between the agents.

To solve the generated problem instances, we used
the SAT-based algorithm to solve the Local Tmara-
Diag problem of every agent, and then the Asyn-
chronous Diagnosis Algorithm (ASYDIA) and Syn-
chronous Diagnosis Algorithm (SYDIA) to solve the
Distributed Tmara-Diag problem. We also test a
version of the ASYDIA and SYDIA algorithms where
the algorithms do not guarantee that the diagnoses
will be found in a ascending order by the cardinality
of the solution. We call the random order version of
ASYDIA and SYDIA, Asynchronous Diagnosis Algo-
rithm Light (ASYDIAL) and Synchronous Diagnosis
Algorithm Light (SYDIAL), correspondingly. The al-
gorithms were implemented in Java and run on a Win-
dows machine. The constraints modelling of the SAT-
based algorithm were implemented and solved using the
Choco library.

5.2 Results
The plots in Figure 2 show the average runtime it
took the different algorithms to solve the Distributed
Tmara-Diag problems generated. Plot 2a shows how
the runtime (y-axis) is affected by the number of of
agents (x-axis) for problems with 10 time steps and 5
faulty agents, plot 2b shows the impact of the num-
ber of time steps (x-axis) on the runtime (y-axis) for
problems with 10 agents and 5 faulty agents, and plot
2c shows the impact of the number of faulty agents
(x-axis) on the runtime (y-axis) for problems with 10
agents and 10 time steps.

There are some trends we can see. First, the run-
time grows for problems with larger number of agents,
larger number of time steps and larger number of faulty
agents. The runtime increases faster with the growth
of the number of time steps (Figure 2b) than the num-
ber of agents (Figure 2a). This can be explained by the
way the agents select a candidate belief corresponding
with a diagnosis. It checks the belief for consistency
only with higher priority agents, but for all of the
time steps. Additionally, it can be seen that the run-
time increases exponentially with the increase of faulty
agents (Figure 2c). This can be explained by the fact
that every faulty agent generates an amount of beliefs,
which contribute to the branching factor of the diag-
noses space. This means that there are more plausible
diagnoses that can be found.

Second, the gap in runtime between SYDIA and
ASYDIA algorithms shows clear advantage for SYDIA.
The reason is that while in SYDIA an agent can as-
sume that the beliefs of higher priority agents are all
consistent with each other, an agent in ASYDIA can-
not assume that, which is the reason for the additional
computational effort. Third, figure 2 shows that find-
ing diagnoses in increasing cardinality impacts the run-
time of the algorithms. The runtime of algorithms that
find diagnoses in cardinality order is higher than those
that do not. This gap is especially noticeable between

(a)

(b)

(c)

Figure 2: The runtime for solving the Distributed
Tmara-Diag problems when varying the number of
agents (a), time steps (b) and faulty agents (c).

ASYDIA and ASYDIAL than their counterpart syn-
chronous algorithms. The reason for this gap is that
when taking cardinality into account, algorithms some-
times dispose of valid solutions due to non matching
cardinality.

Figure 3 shows the average amount of Information
Units (IU’s) shared between the agents for the differ-
ent algorithms (y-axis). A single information unit is de-
fined by the resource of an agent at certain time step:
〈ai, r, t〉. Plot 3a shows how this amount is affected
by the number of of agents (x-axis) for problems with
10 time steps and 5 faulty agents, plot 3b shows how
this amount is affected by the number of time steps (x-
axis) for problems with 10 agents and 5 faulty agents,
and plot 3c shows how this amount is affected by the
number of faulty agents (x-axis) for problems with 10
agents and 10 time steps. In figure 3 we can see some
trends that are similar to figure 2 and some that are
different. First, the amount of IUs sent increases with
the number of agents, time steps, and faulty agents,
since checking beliefs for consistency with less agents,
time steps or faulty agents means sharing less IUs. Sec-
ond, the gap in sent IUs between ASYDIA and SYDIA
shows an advantage to ASYDIA. It can be explained

(a)

(b)

(c)

Figure 3: The amount of Information Units sent
while solving the Distributed Tmara-Diag prob-
lems when varying the number of agents (a), time steps
(b) and faulty agents (c).

by the way that the agents share information among
themselves. In SYDIA, in order to reach a belief set
of size |A| that can be a candidate for a diagnosis, the
agents need in turn to send information to each other
until they reach such possible global diagnosis. This in-
volves backtracking and hence increases the occasions
at which information is being sent. In ASYDIA on the
other hand, once the initial beliefs are being commu-
nicated, each agent holds a potential global diagnosis.
The additional information exchanged in that case is
only the information needed to change enough beliefs
in order to get a Consistent Agents Belief View.
This explains the third trend shown, where the gap in
information shared between the algorithms and their
cardinality agnostic versions is higher with SYDIA and
SYDIAL than with ASYDIA and ASYDIAL. This can
be explained by the fact that SYDIA and SYDIAL do
not drop valid diagnoses due to cardinality constraints.

6 Conclusions and Future Work
In this work, we addressed the problem of diagnos-
ing agent failures in executing their Tmara for a sys-

tem where the agents are not willing to share their
plans. Our approach consists of using MBD approach
to produce local diagnoses and using distributed meth-
ods for combining these local diagnoses to global diag-
noses. For the distributed methods we presented a syn-
chronous and an asynchronous algorithms. We found
that the synchronous algorithm outperforms the asyn-
chronous one in terms of run time, and that the asyn-
chronous algorithm outperforms the synchronous one
in terms of communication overhead. We also found
that both algorithms’ perform better if the cardinality
of the diagnosis is not taken into account.

For future work we plan to add more complex fault
and conflict models. In this work the fault model dic-
tates that an agent halts its execution for one time step.
In a real environment a faulty agent could even occupy
a resource that is not part of its plan. Also, we would
like to explore a conflict model in which an agent waits
for its resource to become available and then continue
its execution.

References
[1] Orel Elimelech, Roni Stern, Meir Kalech, and

Yedidya Bar-Zeev. Diagnosing resource usage fail-
ures in multi-agent systems. Expert Systems with
Applications, 77:44–56, 2017.

[2] Nico Roos and Cees Witteveen. Models and meth-
ods for plan diagnosis. Autonomous Agents and
Multi-Agent Systems, 19(1):30–52, 2009.

[3] Femke De Jonge, Nico Roos, and Cees Witteveen.
Primary and secondary diagnosis of multi-agent
plan execution. Autonomous Agents and Multi-
Agent Systems, 18(2):267–294, 2009.

[4] Roberto Micalizio and Pietro Torasso. Plan diag-
nosis and agent diagnosis in multi-agent systems.
In Congress of the Italian Association for Artificial
Intelligence, pages 434–446. Springer, 2007.

[5] Roberto Micalizio, Pietro Torasso, and Gianluca
Torta. On-line monitoring and diagnosis of multi-
agent systems: a model based approach. In Proceed-
ings of the 16th European Conference on Artificial
Intelligence, pages 848–852. IOS Press, 2004.

[6] Meir Kalech and Gal A Kaminka. Towards model-
based diagnosis of coordination failures. In AAAI,
volume 5, pages 102–107, 2005.

[7] Meir Kalech, Gal A Kaminka, Amnon Meisels, and
Yehuda Elmaliach. Diagnosis of multi-robot coordi-
nation failures using distributed csp algorithms. In
AAAI, pages 970–975, 2006.

[8] Meir Kalech and Gal A Kaminka. On the design of
coordination diagnosis algorithms for teams of sit-
uated agents. Artificial Intelligence, 171(8-9):491–
513, 2007.

[9] Makoto Yokoo, Edmund H Durfee, Toru Ishida,
and Kazuhiro Kuwabara. The distributed con-
straint satisfaction problem: Formalization and al-
gorithms. IEEE Transactions on knowledge and
data engineering, 10(5):673–685, 1998.

	Introduction
	Related Work
	Problem Definition
	Centralized Tmara-Diag Problem
	Distributed Tmara-Diag problem

	Method Description
	MBD Background
	Distributed Tmara-Diag as an MBD problem
	Distributed Tmara-Diag Algorithms

	Evaluation
	Experiment Setup
	Results

	Conclusions and Future Work

