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Abstract

In the manufacturing industry, it is of prime im-
portance to be able to retrieve the health status of
production lines and to know how products nav-
igate across operations. Products that are sus-
pected to be faulty are deviated from the nom-
inal path and inspected more closely. The fact
that some products deviate from the nominal path
and others fail at some check operations might
indicate a risk for quality. This paper proposes
a method to obtain the process model automati-
cally, following the principles of the process min-
ing field. The found model not only shows the
product transitions from one operation to another,
but also includes the time constraints bounding
the “normal” time for each transition. From this
model, products can be clustered according to the
path they follow along the process The clustering
results for the product batch and the product it-
self are ultimately used to compute a quality in-
dex. The whole method is applied to a SMT PCB
production line from Vitesco Technologies.

1 Introduction
In the Printed circuit boards (PCB) industry today, parts are
manufactured continuously 7 days a week, 24 hours a day.
In this paper, we present a quality index for produced parts
based on data collected from the assembly processes. To do
this, we applied different approaches of process mining to
discover and represent the process model as well as to check
the conformance of the product production path. Along the
path, products are submitted to a series of operations, some
of which are control processes that can sanction a product
as good or faulty .

The field of process mining is concerned with extracting
useful information about process execution, by analyzing
event logs [Song et al., 2008]. Process discovery and con-
formance checking are the most important tasks in the pro-
cess mining field. The former consists of finding a process
model by analysing a set of sequences or traces extracted
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from event log, while the later refers to the analysis of rela-
tion between the behaviour of a process described in a pro-
cess model and event logs that have been recorded during
the execution of the process [Carmona et al., 2018] . Many
process discovery algorithms were proposed, among them
the α algorithm [Song and van der Aalst, 2008], Heuristic
Miner [Weijters and Ribeiro, 2011][Weijters et al., 2006],
and Inductive Miner [Leemans et al., 2013]. The algo-
rithm that we propose in this paper used Directly-Follows
Graphs (DFGs) for process representation and frequency-
based filtering to tackle complexity problem. Conformance
checking is useful in several tasks, like performance analy-
sis [Adriansyah and Buijs, 2012], detecting high-level devi-
ations [Adriansyah et al., 2013], and alignment-based preci-
sion measures [Adriansyah et al., 2015]. Our conformance
checking approach is original in the sense that it uses a de-
cision tree with various criteria to compare real behaviour
with the process model taking into account temporal con-
straints.

Figure 1, taken from [Son et al., 2014], summarizes the
process mining framework in a manufacturing process envi-
ronment. In the data preparation step (step 1), we extracted
raw data in form of text messages from MES databases and
converted them to event log. Then, the event logs were pre-
processed by checking missing values, filtering out redun-
dant data and duplicated values (step 2). In the Process Min-
ing and Analysis step (step 3), for our use case, we focused
on process perspective that consists of discovering process
model, conformance checking and other performance anal-
ysis. Finally, results and evaluation are presented in step 4.
These tasks are presented in more detail all along the paper.

In our work, process discovery and conformance check-
ing are ultimately used to sort products in each batch into
different classes that can be associated to a penalty index
based on the path normal or faulty .These indexes were de-
cided by process experts and used to compute the quality
score of product batches. The data that we analyzed comes
from different machines and assembly lines producing a sin-
gle family of products in a real PCB assembly process.

The paper is organized as follows. Section 2 describes
our use case, the SMT PCB Assembly process . Section
3 presents some basic mathematical concepts, the process
model generation method as well as related time constraints.
Section 4 explains how product populations are clustered
and the penalty indexes that are used to assess product qual-
ity. Section 5 presents the results that we have obtained on
our use case. Finally, Section 6 concludes the work and pro-
vides some perspective ideas.



Figure 1: Process mining Framework in a manufacturing environ-
ment [Son et al., 2014]

2 Use case: a PCB Assembly process
The PCB assembly process is divided into two main phases
(see Figure 2) :

Front End Assembly (FE): electronic components are
placed and soldered onto the PCB using Surface Mount
Technology (SMT). A schematic view of a SMT line is pre-
sented in Figure 2. The first operation is achieved by the
Solder Paste Printing (SPP) that prints a solder paste layer
on the surface of the PCB. This is followed by the Solder
Paste Inspection (SPI) machine. Next, electrical compo-
nents are mounted onto the surface of the PCB and pass
through the reflow oven in order to be permanently attached
to the PCB . The front end phase ends with an Automated
Optical Inspection (AOI) that checks components position
and solders quality. This whole process can be repeated for
double-sided boards, in which case we denote FE1 and FE2
the two phases.

Back End Assembly (BE): connectors that communicate
with peripherals are fixed to the PCB and the set is assem-
bled in a housing for protection and thermal dissipation.
Next, functional tests that verify the product operation are
finally performed . Back end lines are suited to the specific
needs of each product, and in many cases, employ a com-
bination of human operators and specialized robots [Shaw,
2012].

Figure 2: A schematic view of PCB assembly process

3 Timed process model construction
In this section, we introduce several primary concepts used
in PM, then the notion of timed process model and how to
construct it from event logs. The aim of a timed process
model is, on the one hand, to represent the real process and,

on the other hand, to represent time constraints that will be
used for product’s quality characterization.

Let us formally define the concept of event which relies
on the concept of event type expressing the semantic label
associated with the event. The set of all event types is de-
noted by E , E∗ is the set of all finite sequences over E .
Definition 1 (Event). An event is defined as a pair (ei, ti),
where ei ∈ E is an event type that identifies the event and ti
is the event date.

Time representation relies on the time point algebra and
time is considered as a linearly ordered discrete set of in-
stants whose resolution is sufficient to capture the process
dynamics. Events generally come in streams forming se-
quences.
Definition 2 (Sequence). A sequence S ∈ E∗ × N is
an ordered set of events denoted S = 〈(ei, ti)〉i∈Nl =
{(ei, ti} / ei ∈ E , i = 1, . . . , l, ti < ti+1, i = 1, . . . , l−
1}, where l is the dimension of the sequence S.

Given a set of process activities, events are useful to rep-
resent whether the beginning or the end of each activity.
Event types provide an identifier for the activity and the date
place them in an ordered sequence.

A process instance i.e a product manufacturing is charac-
terized by the sequence of activities that are executed, hence
by a sequence of events qualified as trace. An event log
gathers several traces.
Definition 3 (Trace). A trace is a sequence of events σ ∈
E∗ × N executed for some process instance. The trace sup-
port Eσ is given by the ordered set of event types present in
the trace.

Definition 4 (EventLog). An event log L is a multi-set over
E∗, i.e., a trace can appear multiple times in an event log.

Definition 5. (Directly Follows Graph) A Directly Follows
Graph, denoted as DFG is a pair (G,L) such that:

• G is a directed graph G = (V,E) with vertex set V
and edge set E.

• L is a set of labels, where li,j is associated with the
edge between vertex vi and vertex vj .

Definition 6. (Process model) A process model, denoted as
PM is aDFG, where V is instantiated with the set of event
types related to the process and the edges of E represent the
precedence relation according to the traces of the process.
V includes two specific nodes, a source node Vstart and a
well node Vend. The edge labels in L can represent different
information, such as transition counts, durations, etc.

In our real use case, V is the set of event types occurring
in the traces of our production process, E is the set of all
possible transitions representing product state changes, and
L contains information about the frequency of these state
changes stored in the event log.

Figure 3a shows the DFG of our production process ob-
tained from all event logs data collected in 2019. The graph
was constructed with the PM library developed in Python
PM4Py [Berti et al., 2019]. In this graph, the event types
associated to nodes are numeric identifiers. The edges refer
to product state transitions, for example between operations.
Additionally, the label on top of each edge, li,j represents
the number of products that have taken the corresponding
transition. For example, there are 10244 product transitions
between the node marked with the event type Operation 0



(the Laser Printing operation) and the node marked Opera-
tion 1 that corresponds to the Solder Paste Inspection face
1.

(a) (b)

Figure 3: Process model (a) Directly-Follows Graph. (b) Timed
process model.

The constructed PM is a representation of all the transi-
tions that have been undertaken by the products in 2019.

In the first instance, we used a simple algorithm to find
the nominal process model. Before describing this, let us
notice that a trace as defined in definition 3 corresponds to
a path between Vstart and Vend in PM . The PM shown
in Figure 3a includes various such paths. In our algorithm,
the nominal process model is constructed based on the path
that most products follow. We call this path the nominal
path P∗. Products of the same family follow the same path
if nothing wrong happens along the production chain. The
nominal path P∗ is computed by the following formula:

P∗ = argmax
P∈PM

freq(P) (1)

where freq(P) returns the number of traces, i.e. process
instances, that follow the path P .

In Figure 3, the nominal path can be retrieved by follow-
ing purple color operation identifiers.

3.1 Time constraint extraction
Time constraints are quite indicative of process problems
and this is why we are interested in retrieving what would
be a normal time between operations. To do so, we opted
for an interval time label that represents the most frequent
time support among products.

Let us consider an event log L that gathers a set of traces
T representing different instances of the same process PM .
Considering two adjacent edges vi and vj corresponding to
two event types ei and ej belonging to the support of all the
traces in the subset Tk ⊆ T , we assume that in any trace
σ ∈ Tk, tj > ti, then the label lij is determined as follows:

lij = [t−i,j , t
+
i,j ] (2)

where:

t−i,j = minei,ej∈Eσ,σ∈Tk(tj − ti),
t+i,j = maxei,ej∈Eσ,σ∈Tk(tj − ti).

The time intervals defined in equation (2) represent the
min and max bounds on the elapsed time between two con-
secutive product state changes in the process.

3.2 Timed process model
In the previous paragraph, we presented the time constraint
extraction method. The process model labelled with these
time intervals is called the Timed process model. Its defini-
tion is given as follows:

Definition 7. (Timed process model) A timed process model
(t-PM) is a process model PM for which edges are labelled
according to the time constraints given by equation (2).

A process instance, or a trace σ =
〈(e1, t1), (e2, t2), ..., (en, tn)〉 is said to satisfy the timed
process model if:

1. The sequence of event types 〈e1, e2, ..., en〉 can be re-
played in the graph G of t-PM.

2. All event pairs (ei, ti) and (ej , tj) satisfy the time con-
straint [t−i,j , t

+
i,j ], i.e. tj − ti ∈ [t−i,j , t

+
i,j ].

4 Characterizing production quality
The timed process model obtained in 3.2 provides a real
model of the process but it is also a support to better char-
acterize the production quality i.e the quality of final prod-
ucts. The idea is to sort the product populations and to as-
sociate each population with a penalty index depending on
the faulty operations that are encountered along the path.
For this, we developed a classification algorithm to cluster
products into different populations or classes based on their
production path (i.e process instance) .

4.1 Sorting populations by conformance checking
Populations are defined by constructing a decision tree for
the classification [Myles et al., 2004]. The primary advan-
tage of using a decision tree is that it is easy to follow and
understand. Decision trees have four main parts: a root
node, internal nodes, leaf nodes and branches. The root
node is the starting point of the tree, and both root and in-
ternal nodes contain a test or criteria on an attribute. Each
branch represents the answer to the test, and each leaf node
represents a class label. Let Y = {y1, y2, ..., ym} be a set of
m class labels for all process instances. The aim of the parti-
tion issued from the decision tree is to gather homogeneous
process instances together. Classes are then associated with
penalty indexes that characterize their property.

For a first study, classes and penalty indexes are defined
by process experts. The partition of products into these
classes is done by checking the conformance of the corre-
sponding trace with the timed process model. Several crite-
ria are used as the consistency with the time constraints, the
order of operations, the presence or absence of some impor-
tant operations . A description of these criteria or classifi-
cation rules are presented by a decision tree given in Figure
4. The light blue boxes represent internal nodes that contain



split rules. The gray boxes are leaf nodes with correspond-
ing class labels. Each class is associated with a score or
penalty index (red number).

Figure 4: Decision Tree for product classification.

4.2 Penalty index of products
As mentioned previously, each product is associated with
a so-called individual penalty index depending on which
class it belongs to. In our context, this index is not sufficient
as we assume that the quality of a product depends mainly
on its production path and on its production batch. A
batch is defined as a sub-set of products that are produced
continuously and consecutively. Products within a batch are
assembled under almost the same conditions and configura-
tion. Then we can extract batches from the event logs by
analysing the regularity of products in the production line,
i.e. by identifying inactive period. An inactive period is a
pre-defined time intervals in which no product passes due
to configuration changes in production.

We formally define batches as follows. Let B = {bj , j =
1, ..., |B|} be a set of |B| batches, where bj = {(xji , y

j
i ), i =

1, ..., |bj |}, xji is the i-th product in the batch j, yji ∈ Y is
the associated class label and |bj | the batch size, i.e. the
number of products that the batch contains. We denote
p̃(xji ), the individual penalty index of product xji . For exam-
ple, a product xji has penalty p̃(xji ) = 0 if it belongs to class
nominal (see Figure 4). This means that this product fol-
lows the nominal path without fail operations and respects
the temporal constraints between operations.

The penalty index of a product in a batch, denoted p(xji ),
is defined as a combination of its individual penalty index
p̃(xji ) and the penalty index of its batch p(bj).

• Penalty index of the batch bj :

p(bj) =
1

|bj
|
|bj |∑
i=1

p̃(xji ) (3)

• Penalty index of i-th product in batch bj :

p(xji ) = λ×p̃(xji )+(1−λ)×p(bj), λ ∈ [0, 1] (4)

Generally products go through several phases from sep-
arate components to assembly and packaging. Due to the
heterogeneous in configuration of different phases, the par-
tition of products into batches in each phase is also differ-
ent. Hence, we compute the penalty index of product after
each phase and the penalty index for final product at the end
of process is defined as the weighted average of them. Let
X = {xi, i = 1, ..., n} the set of all products. In each phase,
a product xi belongs to a batch bj and the associated penalty
index is computed by formula (4). Let Ii the set of indexes j
such that bj contains xi over phases:Ii = {j ∈ N|xi ∈ bj}.
The final penalty index of product xi noted pf (xi) is defined
as:

• Final penalty index of product xi:

pf (xi) =
∑
j∈Ii

αj × p(xji ) ,
∑
j∈Ii

αj = 1 (5)

Next section presents the application of our proposal.

5 Quality evaluation of the PCB production
Line

The proposed approach has been illustrated using data set
from a Vitesco Technologies (VT) plant, an automotive com-
pany specialized in drivetrain technology for all types of ve-
hicles. At VT plants, all products are tracked by an unique
ID in form of a data matrix printed on the PCB. This matrix
is read each time the PCB goes through an operation. Fur-
thermore, the manufacturing processes are tracked, traced
and controlled during the production by the Manufacturing
Execution Systems (MES).

5.1 Data description
Raw data used in this use case are generated in real-time or
near-real-time by the MES. In fact, machines generate data
in form of messages that contain information about produc-
tion process. Figure 5 presents an example of decoded mes-
sages from Vitesco Technologies cloud storage service. Each
message is generated from every single operation through
which a product (PCB) is performed. Hence, messages con-
tain features related to machine, operation and product. We
introduce below a list of common features (Figure 5):

• Type of message (red): There are mainly two types
of message, informative message and control message.
While informative messages notify that the PCB has
entered or exited some operations, control messages
give us detailed information about the quality of prod-
uct. Hence, these messages have a feature of sanction
that could be Pass (P) or Fail (F). An example of con-
trol messages is the one generated from the AOI ma-
chine.

• Machine host name/Machine_ID (pink): The identi-
fication of the machine or computer that performed an
operation in the PCB.

• Optional description (violet): comments about the
performed operation.

• Family (green): Product family that is being pro-
duced.

• Serial Number/Board_ID (orange): The identifica-
tion number of the product.



• Operation Code/Operation_ID (blue): The identifi-
cation number of the operation being performed.

• Sanction (brown): (For control message) The sanc-
tion given by the operation (F/P), the “F” means the
operation has failed meanwhile the “P” letter means
the operation has been performed successfully.

• Timestamp (purple): The date and time an operation
was performed.

Figure 5: Snapshot of messages file from MES. The data was en-
coded for preserving confidentiality.

The aim of our study is to analyse the path of products
and their transition time through event logs. Hence, we con-
sidered only features that allow us to transform messages
into event logs. These are Type of message, Serial Number,
Operation Code, Sanction and Timestamp. The experimen-
tation was carried out on data related to a specific product
family collected during 2019.
A pre-processing stage was needed in order to removing du-
plicated messages, filtering bad format messages, gathering
and sorting messages related to the same product and trans-
form data into event logs.

The final data set corresponds to over 10000 single elec-
tronic boards. We analyzed that over 98, 5% (9902 prod-
ucts) of them are good products i.e successfully produced
and delivered to clients.

During production process, events tagged with a fail no-
tification indicate that the corresponding operation has not
been performed as supposed. These fail sanctions can come
from a real defect or an equipment measurement error. Di-
agnosis need to be perform on these products in order to
reveal the real defect cause. Figure 6 represents the dis-
tribution per product of the number of fail events appearing
during production process for good and bad products. There
are more fail events generated in bad products than in good
products, which allows us to take into account this in our
product quality characterizing approach.

Figure 6: Distribution of Fail events per product. Left: Bad prod-
ucts, Right: Good products.

Moreover, the data analysis pointed out that most prod-
ucts were manufactured within 2 days, as expected, but
some of them were in production process longer than that.
These products require a more thorough analysis.

5.2 Quality evaluation of electronic boards
For characterizing product quality, the penalty index score
from a timed process model as presented in Sections 3.2 and
4 was used.

In this use case, for the time constraint extraction (see
Section 3.1) instead of using the min and max value to
define the bounds of time constraints, we used a statistical
value (5th and 95th percentile) to exclude extreme and out-
lier values. The process model for this product family is
quite simple (see Figure 3b). Operations are performed suc-
cessively, one after the other. There is no deviation and there
are not operations that perform at the same time (problem of
concurrency).The next step is to classify products by com-
paring their production path with the timed process model.
Split rules based on the conformance of product’s path with
the timed process model and classes are presented in the de-
cision tree in Figure 4. With an process expert we also asso-
ciated to each class a penalty index between 0 an 10 which
characterizes the conformance level.

Figure 7: Batch penalty indexes and batch sizes for each produc-
tion phase

Note that we excluded two classes half begin and half end
because paths in these classes are incomplete.
Once products are classified, we computed penalty index for
batches and for final products based on equations (3) and
(5).

As a reminder, a batch is a sub-set of products that are
produced continuously and consecutively. Batches are ex-
tracted from event log and the result shows that the num-
ber of products in batch is varied. Figure 7 presents the
relation between penalty index and batch size in the three
phases FE1, FE2 and BE of production process. Most of
batches have a small penalty index, between 0 and 1 over
three phases. This result shows that the majority of batches
respect the timed process model. It also shows that there are
no perfect batch which has a penalty index of 0. This means
that there is no batch in which all products pass through the
production line without any failure or deviation and within
the accepted time interval. Additionally, Figure 7 shows that
batches with a high penalty index (orange points) have small
size. Without an in-depth investigation, this correlation is
explainable. Indeed, the fact that these batches are small
could be due to process interruption or changes in configura-
tion after a sequence of products with bad behaviour. Hence,
the penalty index for them is pretty high.



Figure 8 shows the distribution of penalty indexes for
products in three phases of production process. As expected,
most products have a penalty index in [0, 1] which indicates
a good compliance with process model. Moreover, we can
see that penalty indexes of products in FE1 phase have less
variation than in FE2 and BE phase. These results open
the door for further examination and improvement actions.

Figure 8: Product penalty indexes for each production phase

Finally, we present below the final penalty index for prod-
ucts as defined in equation (5) (see Figure 9). as expected
from previous results most of products have small penalty
index. In association with process experts detailed analy-
sis should be performed on products with high penalty in-
dex. The results obtained give us relevant information about
products behaviours during assembly process. These results
were sent to production process experts for further analysis
and process optimisation.

Figure 9: Final penalty indexes for all products.

6 Conclusion and Future work
In this paper, we presented a log-based framework for health
status characterization of a production process based on a
quality index. Process mining techniques are used to build a
timed process model from event logs and to check the con-
formance of product’s paths. An experiment was conducted
on a large dataset from the automotive manufacturing com-
pany Vitesco Technologies.

The experiment demonstrated that the proposed frame-
work works well. The results showed to be effective for do-
main experts to have a deeper knowledge of real production
process. The proposed indicator evaluates the behaviour of
products during their production time. This indicator pro-
vides an overview of products circulation and reveals abnor-
mal ones. For future work, we need to fine-tune the model
parameters under the supervision of process experts. The
products behaviour information found does not seems to be
enough to asses their quality. We expect, for the next study,

to have information on product quality that we could inte-
grate into our approach to build a learning model for clas-
sification and optimizing parameters. The proposed frame-
work is generic and could be applied for various problems
in process monitoring and optimisation.
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