
Drawing on SFL for Making Intelligent Decisions in RBL

Martin Zimmermann and Ingo Pill and Franz Wotawa
Christian Doppler Laboratory for Quality Assurance Methodologies for Cyber-Physical Systems

Institute for Software Technology, Graz University of Technology
Inffeldgasse 16b/II, 8010 Graz, Austria, email: {mzimmerm, ipill, wotawa}@ist.tugraz.at

Abstract
Even when facing issues, we expect today’s sys-
tems to evaluate the situation and make intelligent
choices in order to fulfill their tasks. With RBL,
we recently proposed a language that we can use
for describing and enabling smart system behav-
ior such that a system can autonomously react to
issues occurring during operation. The proposed
framework needed a designer to fine-tune internal
parameters though and suffered from performance
problems for specific scenarios. We now show
how to exploit diagnostic reasoning for enabling
a self-configuring plug and play setup of an intel-
ligent system that can make the most promising
choices to fulfill its tasks. We also show that this
concept significantly improves the performance
for previously problematic application scenarios
without sacrificing overall performance.

1 Introduction
Intelligent behavior is a feature we have grown to expect to-
day’s technical systems to exhibit. Be it our smartphones
having to last through the day by efficiently regulating
power consumption, automated industry plants that have to
intelligently react to problems like local power loss or con-
veyor congestions, or autonomous vehicles that have to cope
with an abundance of possible faults but have to maintain
safety under all circumstances. We expect all these systems
to make intelligent decisions in order to effectively and ef-
ficiently carry out their tasks—regardless of encountered is-
sues and slight changes in the environment. In the context
of faults, we call systems that implement such smart behav-
ior to be fail-operational, such that they can still discharge
their duties, albeit possibly with degraded performance.

There is a variety of techniques available that a designer
can employ as technological basis for implementing such
behavior. This includes calculi like the situation calculus [1;
2] or dynamic planning concepts that allow us to react to
changes in the environment [3]. In our work, we focus
with the Rule-based Language (RBL) framework [4] on a
language and the corresponding framework that allow us to
describe a system’s possible actions with pre- and postcon-
ditions. Most importantly, we can constantly reason about
viable plans (described as action sequences) for achieving
our goals. Essential aspects are that we can reason about
(necessary) plan updates considering live data about the in-
dividual actions’ success and that we will in turn take the

actions’ success rates for future smart decisions into ac-
count. Furthermore, a corresponding framework for au-
tomatically generating JAVA code from a RBL file to im-
plement intelligent behavior for already existing systems is
available on GitHub1. In [5], we showed, for example, that
we can use an earlier version of this framework to design
fail-operational behavior for a robot—so that it can carry out
its jobs even when experiencing some internal or externally
triggered faults. Originally, RBL targeted fail-operational
behavior only, but it is apparent that with RBL’s concept,
we can describe any setting that fits this syntactic setup of
actions and their pre- and postconditions.

When employing RBL, a designer has to define rules with
pre- and postconditions for a system’s actions. These can
be automatically translated into JAVA code to be integrated
into the system code. This code indeed contains all parts
and functionality necessary to enable the desired behavior,
including the control part improved by our current work.

From our experiments in [5] we saw that there are two po-
tential disadvantages to deploying RBL. The first is related
to the issue that we have to define and fine-tune several pa-
rameters concerning the decision-making process. Second,
we saw in our experiments that with configuration problems
there is a problem class where using RBL resulted in inferior
performance. With our current work, we replace the manu-
ally tuned parameters with a diagnostic reasoning concept.
There, we take the individual actions’ success (and thus in
turn the confidence in the individual rules’ effects) towards
achieving our goals into account. Via integrating a light-
weight diagnostic reasoning concept for assessing the suc-
cessfulness of the individual actions, we can avoid having to
fine-tune internal parameters on one hand, and on the other
hand, we can achieve the desired performance also for the
class of configuration problems—without sacrificing perfor-
mance for other classes.

For the underlying diagnostic reasoning concept, we
translate spectrum-based fault localization (SFL) [6] to a
live and rule-based setting. That is, we recently showed
in [7] how to adopt SFL (which is traditionally used to eval-
uate the executions of a test suite) for static diagnostics of
knowledge-bases used in reasoning processes. The RBL set-
ting where we reason with our RBL-rule set during live op-
eration of a system is similar, but it requires us to extend
the original static scope. In this manuscript, we show how
to adopt the concept for RBL and how to extend it to ac-
commodate a live setting. In a first step, this allows us to

1https://github.com/martinzimmermann/RBL-Framework/releases/DX2020



continuously evaluate the success of the individual actions
during their execution. Then, based on these data, we can
constantly update our internal predictions concerning how
successful the individual rules are in achieving the desired
effects. These success rates then serve as a basis for an edu-
cated and smart decision concerning the use of the most suc-
cessful rules (and thus the most effective action sequences)
for achieving the desired goal(s).

2 Preliminaries
The RBL framework aims to provide developers with a
light-weight method to model and deploy systems that ex-
hibit intelligent behavior in a changing environment. The
resulting system does not rely on a fixed execution path but
instead intelligently and continuously (re-)designs a viable
action sequence during operation. In order to achieve this,
the RBL framework offers two components; a specific mod-
eling language and a runtime engine for the necessary rea-
soning. The underlying mathematical model for RBL and
this reasoning is based on the Ph.D. thesis of Krenn [8] and
draws on the use of beliefs and rules.

The RBL runtime engine models the environment by
keeping a list of corresponding beliefs. For modeling the
system, we use rules. In terms of syntax, we have that a rule
comprises a set of preconditions, a set of postconditions,
an action (Def. 2), a repair routine (Def. 3), and a weight
that catches our confidence in this rule’s success and whose
computation is described in more detail in Sec. 3. The RBL
runtime engine uses this model when trying to find a rule
sequence (a plan) that (a) fulfills the preconditions for the
individual rules, and (b) leads to the desired and specified
goal with (c) optimal weights.

In order to enable reactive intelligent behavior such that
we can choose between plans, the model should allow multi-
ple viable (in respect of aspects (a) and (b)) plans for achiev-
ing some goal. Based on the rules’ weights, the runtime en-
gine then calculates the credibility in succeeding for each
plan. Finally, in respect of aspect (c), the runtime engine
selects the plan with the highest credibility. If the selected
plan, i.e., one of its actions/rules, fails during execution, the
runtime engine calls the failed rule’s repair routine in order
to bring the runtime engine’s beliefs in a coherent state.

As we will see also in Sec. 4, the concept for computing
the weights has a significant impact on the system’s perfor-
mance. Improving the weight calculation thus has been the
major focus for our work, where we will discuss in detail in
Sec. 3 how to exploit light-weight diagnostic reasoning.

Definition 1 A rule R = (pre, post, a, r, w) consists of a
finite set of preconditions pre, a finite set of postconditions
post, a single action a, a repair routine r, and a weight w.
Rule R can only be executed if all p ∈ pre are known as
beliefs. Iff the runtime engine executes rule R, its action a
is executed. If this is successful, all p ∈ post are individ-
ually added to (or removed from) the runtime engine’s be-
liefs, depending on the individual p. If a is not successfully
executed, the repair routine r is executed.

Definition 2 An action a is a function that interacts with
the environment and returns > (true) iff the interaction was
successful—otherwise it returns ⊥ (false).

Definition 3 A repair routine r is a function designed by
the user that adds and/or removes beliefs from the runtime
engine’s beliefs such as reach a coherent set of beliefs.

Definition 4 A finite plan is a finite rule sequence
R1, . . . , Rn such that allRi’s preconditions are met and the
goal is achieved.

The modeling language for RBL as introduced in [4] im-
plements the following syntax: Beliefs as used to describe
the environment are written as ”<belief>.”. These beliefs
are added to the runtime’s beliefs with the first execution.
Rules to describe the system and its possible actions are
written as ”<pre> -> <goal> <post> <action>.”.
Each rule consists of the following elements:
• pre is a finite set of beliefs that the runtime engine

must know in order for that rule to become executable.
Please note that this set can be empty for describ-
ing a rule that we can always execute. The syntax is
”<belief1>, ..., <beliefn>”. In the literature,
sometimes the term guard is used to refer to this set.

• goal indicates that executing this rule achieves a spe-
cific goal. The syntax is ”#<goal>”. A designer can
ask the runtime engine to either reach a certain goal, or
any of the goals present in the model.

• post is a finite set of beliefs that are either to
be individually added to or individually removed
from the runtime engine’s belief, iff the rule
executes successfully. p ∈ post to be added
are preceded by ”+” and those that are to be re-
moved are preceded by ”-”, resulting in the syntax
”+<belief1> -<belief2> ... +<beliefn>”.
The beliefs get added or removed from left to right.

• action is an identifier for a JAVA class that aggregates
the function associated with the system action and a
repair routine to be called when the action function
fails during execution. Please note that these classes
use fully qualified JAVA class names.

For more details about RBL, we refer the interested reader
to [4; 5] for more extensive discussions of RBL’s syntax.

RBL’s runtime engine controls planning and executing
the plan. Planning from rules is not a new idea and has been
proposed before [9; 10; 11]. Different from most planning
systems though, the RBL runtime engine focuses not only
on planning but also on executing the plan and uses the ex-
ecution’s feedback to improve the continuous (re-)planning.
The runtime engine loops over three distinct tasks.

1. Planning: The runtime engine searches for the plan
with the highest likelihood of success given the indi-
vidual rules’ previous execution results.

2. Execution: The runtime engine executes each rule in
the plan, tracking the successfulness of the rules’ ex-
ecution. If a rule was not executed successfully, i.e.,
the associated action failed, the execution of the plan is
stopped and the failed rule’s repair routine is invoked in
order to bring the system’s beliefs in a coherent state.

3. Update: The runtime engine updates the rules’ execu-
tion history and recalculates the rules’ weight based on
these data.

Before describing in Sec. 3 our approach to exploit a di-
agnostic reasoning concept for computing the weights and
in turn enabling automated smart choices in RBL, let us de-
scribe some basic diagnostic concepts first.

When aiming to reason about the sources of some en-
countered program or system failure, model-based diagno-
sis (MBD) [12; 13] is, without doubt, a powerful technique.



It comes at the disadvantage though, that we need a special
model for the reasoning. Furthermore, while MBD is com-
plete with respect to the used model, the entailed compu-
tations can become quite complex. In particular, we suffer
from the fact that the search space for diagnoses is exponen-
tial in the number of the ”component” health state variables
that we introduced to the model in order to be able to rea-
son about faulty components. While larger numbers of these
variables thus result in a computational disadvantage, the set
of health state variables indeed defines which diagnoses we
can find and which not—so that we often intentionally suf-
fer from computational issues.

With SFL, we take a different approach and consider the
involvement of components in individual failing and pass-
ing behavior, following the idea that some component that is
always involved in faulty behavior but never in correct one is
very suspicious of being the source of the problem (and vice
versa). Since we can seldomly enjoy the luxury of having
such an extreme case where a component is only involved
in either faulty or correct behavior, over the years, many
similarity coefficients [14; 15] for computing each compo-
nent’s individual suspiciousness have been proposed. When
computing these coefficients, we take each component’s in-
volvement or non-involvement in faulty and correct behav-
ior into account, and compute a corresponding suspicious-
ness value for each component that we can then use to rank
the components. In order to implement this light-weight ap-
proach, we thus only need to collect the corresponding exe-
cution data about which component was involved in which
behavior (stored in a matrix also referred to as spectrum -
see Def. 5), as well as data about which behavior consid-
ered in the spectrum is violating or complying with our ex-
pectations (the so-called error vector - see Def. 6). Then we
evaluate the data according to a chosen metric like Ochiai
and establish a suspiciousness ranking for the components
via simple computations (no model being involved).

Definition 5 An activity matrix or spectrum A is an n×m
matrix, where for each of the n system components we have
m rows for m considered behaviors bj . Cell aij is labeled
with 1 iff component ci is involved in bj , otherwise with 0.

Definition 6 An error vector e for some spectrumA (Def. 5)
is a vector of length m (an 1 ×m matrix) s.t. ej = 1 iff bj
in A violates the expectations, and ej = 0 otherwise.

From A and e, we derive for each ci four frequencies
nCN(ci), nCE(ci), nVN(ci) and nVE(ci) that capture in how
many Correct and Violating behaviors (the rows) in A some
ci was Executed or Not. From these numbers we can com-
pute several similarity coefficients that shall describe a com-
ponent ci’s suspiciousness D(ci) of being faulty. Let us in-
troduce with Ochiai, Tarantula, and Jaccard a selection of
well-known metrics:

Ochiai : D(ci) =
nVE(ci)√

(nVE(ci) + nVN(ci)) · (nVE(ci) + nCE(j))

Tarantula : D(ci) =

nVE(ci)
nVE(ci)+nVN(ci)

nVE(ci)
nVE(ci)+nVN(ci)

+ nCE(ci)
nCE(ci)+nCN(j)

Jaccard : D(ci) =
nVE(ci)

nVE(ci) + nVN(ci) + nCE(ci)

It is apparent that SFL is an excellent technique for eval-
uating the executions of a test suite for some software so

that we can easily collect the required data. While it is
not a straightforward adoption, we showed in [7] that we
can exploit SFL also in the context of logic reasoning with
knowledge-bases. That is, while a knowledge base is not
a program that we execute in the traditional sense, one can
record the rules that we use when reasoning about an in-
dividual problem and use these data to define a spectrum.
From an abstract point of view, the reasoning process for
some individual problems with the same knowledge-base
(which plays the role of program or system then) replaces
the individual behaviors for some program as mentioned
above. In order to define an error vector, we suggested to in-
spect whether we would derive a contradiction and whether
we would fail to derive the expected conclusions.

In Sec. 3, we will show how to extend this concept to
the live scope of RBL such as to derive a measure for our
confidence in the individual rules working out as expected.

3 Making decisions based on diagnostic data
As we’ve been discussing in the previous sections, the calcu-
lation of the individual rules’ weights and thus in turn that of
a plan as defined by the sum of the invoked rules’ individual
weights is crucial for performance. With our previous work,
we already made some improvements over Krenn’s original
reasoning, but this required us to introduce additional pa-
rameters. Selecting values for these parameters, while being
obviously critical, has not been a straight forward task and
required tuning as well as domain knowledge and some try
and error experimentation. Furthermore, the performance
we experienced for configuration scenarios turned out to be
below our expectations.

Before describing our concept for replacing these man-
ual parameters with light-weight diagnostic reasoning, let
us first describe how RBL weights are currently computed.
This computation is based on two values: activity for mea-
suring how often a rule was already selected, and damping
for measuring how often a rule failed so far. When discharg-
ing the update task (see Sec. 2), the runtime engine updates
activity for every rule according to Eq. 1, where chosen is 1
if the rule was selected and 0 if not. The primed version of
a value in our equation always refers to the updated value.
The damping values get updated in two steps: (1) for those
rules included in the plan, the value is increased by dval iff
the rule execution failed (Eq. 2) and is decreased by dval if
rule execution succeeded (Eq. 3) — with an upper bound of
1 − dval and a lower bound of dval. In a second step, the
value is updated for all rules according to Eq. 4, regardless
of whether they were part of the plan or not. The parameters
dval, val, target, and zone have to be provided and tuned by
the designer, where dval, val, and target are float values in
the range (0, 1) and zone() is a function that returns> or⊥.

The final weight is then calculated from activity and
damping according to Eq. 5, where the designer has to
choose float values for activity scaling and damping scaling
in the range (0, 1).

activity′ =
1

2
(chosen + activity) (1)

damping′ =

1− dval
if (damping + dval)
> 1− dval

damping + dval otherwise
(2)



damping′ =

dval
if (damping− dval)
< dval

damping− dval otherwise
(3)

damping′ =


damping + val

if zone (damping) = >
∧ damping < target

damping− val
elif zone (damping) = >
∧ damping > target

damping otherwise

(4)

weight =(1− (activity ∗ activity scaling)) ∗
(1− (damping ∗ damping scaling))

(5)

Important to note is that higher weights indicate better
performance in this calculation, which is in contrast to our
new SFL based computation described later on. Please also
note that for Krenn’s original approach and our previous ver-
sion of RBL, only minimal plans where we cannot remove
any rule (but which can be of varying cardinality) are con-
sidered when selecting the most promising one. Ensuring
this minimality is important, since in principle adding ac-
tions would increase the weight/attractiveness of a plan.

As we discussed in Sec. 2, SFL has been used tradi-
tionally for identifying faulty components when given data
about a test suite execution for some system. In our context,
rules represent the considered components, and our aim is
now the exact opposite. That is, we aim to select the most
promising rules, or in other words, those rules that are the
least likely to fail. Furthermore, we are operating in a live
setting where we continuously collect new execution data.

Employing SFL for our purposes does not require mas-
sive changes in the runtime engine. In principle, we con-
tinuously execute a system (in detail, this means executing
plans πi to achieve the current goals), get feedback about the
success of the execution of some πi, and compute the fre-
quencies nCN(ci), nCE(ci), nVN(ci) and nVE(ci) (see Sec. 2)
for the individual rules ci on-the-fly. Formally, whenever
we know whether some π failed or succeeded, we would
add another column to the spectrum A catching which rules
were part of π and which were not. Furthermore, we en-
large the error vector e with one field for π and add the info
whether π failed or succeeded. These data then define the
desired frequencies and in turn the values for the chosen
similarity coefficient.

In practice, we keep track of the current values for the
frequencies, and whenever a plan π fails or succeeds, we
increase the appropriate frequencies by one. Then we can
compute the corresponding similarity coefficients for the in-
dividual rules via the simple formulae depicted in Sec. 2.
In Algorithm 1, we can see a more detailed version of this
concept for supervising the plan execution, including all the
loops and decisions made. In this algorithm, we directly call
the actions and repair routines associated with a rule’s action
class. The function update frequencies(E,res) is
used to update the frequencies and subsequently recompute
the weights for all the individual rules. It has two arguments:
E representing a list containing those rules that have been
executed for plan π, and res that catches whether the plan
failed or succeeded.

The updated weights can then be used in the planning part
of the runtime engine. With the new weight model, we are

Algorithm 1 An algorithm that supervises a plan’s execu-
tion and updates the frequencies and weights for all rules.
Input: a valid plan π and a function update frequencies

that updates the frequencies and rule weights
Output: > if the plan execution succeeded, ⊥ otherwise

1: procedure EXECUTE PLAN(Π, update frequencies)
2: R← π in reverse order
3: E ← ∅
4: res← ⊥
5: while R 6= ∅ do
6: r ← R.pop()
7: res← r.action.action()
8: if res = ⊥ then
9: r.action.repair()

10: break
11: else
12: E ← E ∪ {r}
13: end if
14: end while
15: update frequencies(E, res)
16: return res
17: end procedure

searching for those plans with the least weight since in our
case a plan’s weight is associated with the risk of the plan
failing. That is, if a rule has a low weight this means the
rule is less likely to fail, and again a plan π’s weight is com-
puted as the sum of its rules’ weights. Thus, we also do
not have to reason about minimal plans (as opposed to the
earlier computation model described above). That is, since
minimal weight is the optimization criterion for the selec-
tion, when considering all viable plans for the decision en-
sures that there is no subplan that can achieve the same goal.
Please note that if there are multiple plans with the same op-
timal weight, we choose the one created first.

Our new concept does not result in higher run-times. That
is, instead of updating damping and activity, we now up-
date the frequencies. This is less complex since these are
just additions, instead of divisions and additions. Also, for
the weight calculation, the run-time costs stayed nearly the
same. Instead of Eq. 5, we now have to calculate the similar-
ity coefficients as suggested in Sec. 2—where the formulae
for Ochiai, Jaccard, and Tarantula are also not really com-
plex. Overall, the run-time differences are negligible.

A problem that we encountered was that for the similarity
coefficients, no valid value exists when we have insufficient
data such that we would have a division by zero. Since we’re
using the values directly as weights, we assigned a small
value to a rule’s weight in such cases, following the idea that
after a cold start—which is when we suffer from insufficient
data—a rule (and the action behind it) can be assumed to be
healthy rather than faulty.

4 First Experiments
In order to evaluate our new approach, we ran all our pre-
vious examples as well as two new examples with different
RBL versions and configurations. Since most of the exam-
ples depend on random factors, we ran each example with
each configuration 50 times and report average values.

All our examples were executed on a Windows 10 PC
with JAVA version 1.8.0 171. The PC has an Intel Core i5-
7200 @ 2.5GHz CPU, 8 GB of RAM, and an SSD. Our most



complex example, the Mobile Robot, took on average 3.4
seconds for Krenn and on average 1.9 seconds for Jaccard
for the whole simulation (including a 3D simulation of the
robot in its environment). This means less than 1.9 ms were
used for each of the 1000 time steps and RBL took only
a fraction of it. Please note that our code (including the
experimental setup) is publicly available2.

Now let us briefly introduce the examples. They have
between 3 and 5 rules, which, although not large, still shows
the viability of our approach.

• Total fault: Object detection with different sensors.
The system has 3 sensors to choose from, where it can
only choose one sensor per time step, and over time,
the different sensors experience intermittent faults. The
goal is to choose one of the sensors that are currently
working. The only feedback to the system is whether
the currently chosen sensor is working or not [4].

• Temporary fault: The fault patterns of the sensors in
this example are such that fewer sensors are available
at the same time compared to the previous example.
The poor performance of Krenn’s approach for this ex-
ample motivated our previous extensions.

• Weather scenario: Object detection during different
weather conditions. Again, there are 3 sensors, and
each has a different probability of detecting objects in
specific weather conditions. Again, we have to choose
one sensor per time step. It was not always possible
to select a sensor with 100% accuracy, i.e., for some
weather conditions, the best accuracy was 70%. Con-
sequently, there are always some failures (see [4]).

• Mobile robot: Here, we developed a robot’s Modelica
model comprising two differential drives and used a
physics model to simulate different faults in the power
unit. The system controls the voltage supply of the two
differential drives and has to go into a degraded mode
if there is a fault in the power unit. The goal is to se-
lect the right voltage supply such that the robot always
drives straight, no matter whether the robot encounters
a fault or not. Different to [5], for our comparison, we
use the distance between the worst run and the ideal
point, i.e., the point where the robot would hold if the
robot would drive without any faults, as a measure of
success. Since the robot always encounters some faults
during our example, the robot can not reach the point
where he would end up driving without faults. There-
fore, it is not possible to achieve 100% success.

• Robot conf.: This example is very similar to the pre-
vious one, but instead of selecting the voltage directly,
the system must first choose the voltage for the differ-
ential drives and then initiate the drive action. Only
at the drive action, the system will get feedback. This
modification results in a configuration problem.

• Light bulb: In this example the system has to select
a working battery and light bulb combination to make
the bulb light up. Over time the batteries are drained
and replaced, and also the bulbs break and get replaced.
The goal is to always select a battery and light bulb
combination that will work.

We used the following RBL configurations:

2https://github.com/martinzimmermann/RBL-test-programs/releases/DX2020

Table 1: Success rates for different RBL configurations.

K
re

nn

A
gi

ng

D
.o

nl
y

Ja
cc

ar
d

O
ch

ia
i

Ta
ra

nt
ul

a

Total Faul 99.6 99.7 99.9 99.9 2.8 99.9
Temporary Fault 93.6 91.6 99.9 99.9 75.2 99.9
Weather Szenario 74.8 77.0 78.2 82.1 77.8 78.0
Mobile Robot 41.1 64.3 83.1 81.4 0.0 75.2
Robot conf. 58.6 58.6 4.3 81.4 0.0 75.2
Light Bulb 54.8 54.8 14.0 94.4 6.8 61.6

• Krenn uses the original weight model from Krenn’s
Ph.D. thesis as used also in [4].
• Aging uses our previous extensions as described in

Sec. 3. Setting val to 0.01, zone to always return true,
and target to 0.5, our aim was to bring damping back
to it’s original value over time
• Damping only uses the same extensions as Aging.

Here, we set activity scaling to 0 and dmping scaling
to 1—as used to test the mobile robot in [5].
• Jaccard refers to our new approach using SFL for RBL

(see Sec. 3) and the Jaccard similarity coefficient.
• Ochiai refers to our new approach using SFL for RBL

when using the Ochiai similarity coefficient.
• Tarantula refers to our new approach using SFL for

RBL when using the Tarantula similarity coefficient.

From Table 1, we can see that our previous extensions
could increase the success rate over Krenn’s weight calcu-
lation. The parameter-tuning makes a big difference. On
one hand, for the Mobile Robot example Damping only per-
formed much better than the other versions. On the other
hand, for the Robot conf. example it performed badly.

Surprisingly, Original and Aging did not perform that bad
on the configuration problems. Still, there is room for im-
provement as shown by our new SFL versions.

In our experiments not all similarity coefficients per-
formed well. We noticed that using Ochiai resulted in ter-
rible performance. However, Jaccard and Tarantula offered
the best or close to the best performance. Overall, Jaccard
seems to be the most suitable choice in our case. Only for
the Mobile Robot example, the Damping only version of
RBL performed better, as we can see also in Table 1. We
argue that Ochiai’s bad performance might be rooted in the
problem that it often calculates NaN with insufficient in-
formation, but more extensive experiments are required for
isolating the real issue.

5 Related Work
Early on, different methods for representing planning prob-
lems have been introduced. For example, Nilsson intro-
duced Teleo-reactive Programs in [16], Fikes and Nilsson
later developed the famous STRIPS language in [9] and
Blum and Furst refined STRIPS in [10]. Today the most
prominent formal language for planning is probably the
Planning Domain Definition Language (PDDL) [17].

For self-healing systems, Rincon and Teres proposed a
reconfiguration hardware system [18]. Wotawa used Model-
based diagnostics in [19] and [20] to detect errors that occur
at runtime and then restart the faulty components on-the-fly.



Wilkins advocates in [21] reactive planning for agents,
to be better equipped for the real world. For him, reactive
planning couples planning and execution, instead of hav-
ing 2 separated processes. However, he achieves this by
planning multi path plans and replanning when an error oc-
curs. Georgeff follows in [22] a similar approach. Instead of
replanning, he uses partial planning and delayed decisions
to make decisions only when the maximum of information
about the decisions is available.

6 Conclusions
We showed how to adopt SFL for a live setting in order to
generate a metric catching our RBL rules’ healthiness. We
used the resulting similarity coefficients as weights for the
individual rules, and in turn to select rule sequences that are
most likely succeeding in achieving our goals. Combining
SFL with RBL enabled us to improve the rule performance
predictions. Although neither using feedback from a plan’s
execution to improve planning, nor using SFL for rule-bases
are novel in general, combining both and adopting them for
RBL is a novel contribution that leads to attractive results.
Now there is no need to fine-tune parameters, but we can
rely on a plug and play setup. We can avoid catastrophic
results due to wrong parameters and we achieve premium
performance also for previously problematic applications.

In our experiments, we did not only compare our ap-
proach with previous work, but experimenting with several
similarity coefficient metrics we identified Jaccard to offer
superior performance for almost all our examples. Only for
one example, another variant was slightly better.

A side effect of using our concept is that we do not need to
check a plan’s minimality in the planning stage anymore—
which enables us to consider more planning algorithms. In
future research, we will thus focus also on improving RBL’s
planning algorithm in order to keep the runtime overhead
as small as possible. We intend to investigate also different
strategies to discount the experience from older executions,
as might be suitable for highly dynamic applications.

Acknowledgements
The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs and the National Foundation
for Research, Technology, and Development is gratefully
acknowledged.

References
[1] C. Boutilier, R. Reiter, M.l Soutchanski, and S. Thrun.

Decision-theoretic, high-level agent programming in
the situation calculus. In 17th Nat. Conf. on AI and
12th Conf. on Innovative Applications of AI Intelli-
gence, pages 355–362, 2000.

[2] S. Gspandl, I. Pill, M. Reip, G. Steinbauer, and A. Fer-
rein. Belief management for high-level robot pro-
grams. In Int. Joint Conf. on AI, pages 900–905, 2011.

[3] D. Connell and H. M. La. Dynamic path planning and
replanning for mobile robots using rrt. In 2017 IEEE
International Conference on Systems, Man, and Cy-
bernetics (SMC), pages 1429–1434, 2017.

[4] F. Wotawa and M. Zimmermann. Adaptive system for
autonomous driving. In 2018 IEEE International Con-
ference on Software Quality, Reliability and Security
Companion (QRS-C), pages 519–525, July 2018.

[5] G. Engel, G. Schweiger, F. Wotawa, and M. Zimmer-
mann. A rule-based smart control for fail-operational
systems. In Advances and Trends in Artificial Intelli-
gence. From Theory to Practice, pages 137–145, 2019.

[6] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. Spectrum-based multiple fault localization.
In ASE, pages 88–99. IEEE Computer Society, 2009.

[7] I. Pill and F. Wotawa. Spectrum-based fault local-
ization for logic-based reasoning. In 2018 IEEE Int.
Symp. on Software Reliability Engineering Workshops,
ISSRE Workshops, pages 192–199, 2018.

[8] W. Krenn. Self Reasoning In Resource-Constrained
Autonomous Systems. dissertation, Graz University of
Technology, 2008/2009.

[9] R. E. Fikes and N. J. Nilsson. Strips: A new approach
to the application of theorem proving to problem solv-
ing. Artificial Intelligence, 2(3):189 – 208, 1971.

[10] A. L. Blum and M. L. Furst. Fast planning through
planning graph analysis. Art. Intelligence, 90(1):281 –
300, 1997.

[11] H. Kautz and B. Selman. Pushing the envelope: Plan-
ning, propositional logic, and stochastic search. In
13th Nat. Conf. on AI - Vol. 2, pages 1194–1201, 1996.

[12] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57–95, 1987.

[13] J. de Kleer and B. C. Williams. Diagnosing multiple
faults. Artificial Intelligence, 32(1):97–130, 1987.

[14] J. A. Jones and M. Jean Harrold. Empirical evaluation
of the tarantula automatic fault-localization technique.
In ASE, pages 273–282. ACM, 2005.

[15] R. Abreu, P.r Zoeteweij, R. Golsteijn, and A. J. C.
van Gemund. A practical evaluation of spectrum-
based fault localization. J. of Systems and Software,
82(11):1780–1792, 2009.

[16] Nils J. Nilsson. Teleo-reactive programs for agent con-
trol. J. Artif. Int. Res., 1(1):139–158, January 1994.

[17] M. Ghallab, A. Howe, C. Knoblock, D. Mcder-
mott, A. Ram, M. Veloso, D. Weld, and D. Wilkins.
PDDL—The Planning Domain Definition Language,
1998.

[18] F. Rincon and L. Teres. Reconfigurable hardware sys-
tems. In 1998 Int. Semiconductor Conference, vol-
ume 1, pages 45–54 vol.1, Oct 1998.

[19] G. Steinbauer, M. Mörth, and F. Wotawa. Real-time di-
agnosis and repair of faults of robot control software.
In RoboCup 2005: Robot Soccer World Cup IX, vol-
ume 4020, pages 13–23. 2006.

[20] F. Wotawa. Reasoning from first principles for self-
adaptive and autonomous systems. In Predictive Main-
tenance in Dynamic Systems: Advanced Methods, De-
cision Support Tools and Real-World Applications,
pages 427–460. 2019.

[21] David E. Wilkins. Practical Planning: Extending the
Classical AI Planning Paradigm. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

[22] M. P. Georgeff and A. L. Lansky. Reactive reasoning
and planning. In 6th Nat. Conf. on AI - Vol. 2, pages
677–682, 1987.


