
Model-Based Novelty Adaptation for Open-World AI

Matthew Klenk1 and Wiktor Piotrowski1 and Roni Stern1,2 and Shiwali Mohan1 and Johan de Kleer1
1Palo Alto Research Center, CA, USA

e-mail: {matthew.klenk,wiktorpi,rstern,mohan,dekleer}@parc.com
2Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
To be able to function in an open-world, a sys-
tem must be able to adapt to novel situations. We
consider this problem in the context of the popu-
lar Angry Birds game and outline our system de-
sign to address it. Our system, called Hypothesis-
Guided Model Revision over Multiple Aligned
Representations (HYDRA), adopts a model-based
approach to respond to novelty. Central to our
design is the use of mixed continuous-discrete
planning formalism, namely PDDL+ [Fox and
Long, 2006], to model the Science Birds domain.
With this model, HYDRA employs a domain-
independent planner to play the game, and model-
based diagnosis to diagnose and repair the model
when novelties are introduced. We also report a
case study demonstrating how HYDRA adapts its
domain theory to changing dynamics in ballistic
flight.

1 Introduction
One hallmark of human cognition is our ability to func-
tion in an open-world. People navigate to previously un-
seen places, perform new tasks, and integrate new technol-
ogy into their lives. In games, human flexibility supports in-
venting new strategies along with adapting to changing rules
(e.g., consider chess players who play bughouse1). While
current AI systems perform superhuman in many game do-
mains, each of these domains is a closed world, and minor
perturbations of the game can lead to significant drops in
performance. Witty et al. demonstrated that even changes
which made the game easier could cause catastrophic results
for superhuman performing deep Q-learning agents [Witty
et al., 2018]. This mismatch between human cognitive abil-
ities and machine capabilities indicates that adapting to nov-
elty is a major problem in current AI systems. Our research
goal is to impart machines with human-like learning capa-
bilities to make them robust to novelty.

In this paper, we present the novelty response problem
problem in the context of Science Birds domain. Then, we
introduce Hypothesis-Guided Model Revision over Multiple
Aligned Representations (HYDRA), our approach to model-
based novelty response. We provide an outline to our sys-
tem design, which consists of a model-based diagnosis com-

1https://en.wikipedia.org/wiki/Bughouse_
chess

ponent to detect, diagnose, and repair its underlying model
when predictions from models differ from observations in
the environment.

Central to our design is the use of mixed continuous-
discrete planning formalism, namely PDDL+ [Fox and
Long, 2006], to model the Science Birds domain. We
demonstrate how this enables HYDRA to play the game as
well as adapt to many types of novelty by making localized
modifications to the domain theory. Next, we present a case
study demonstrating how HYDRA adapts its domain the-
ory to changing dynamics in ballistic flight. We close with
a discussion of different issues we expect to address in the
course of this project.

2 Problem Definition
Science Birds is a free version of the popular Angry Birds
game. The player launches birds in sequence at a struc-
ture made out of different material blocks with the goal
of destroying the pigs inside. Different birds and struc-
tures have different actions (e.g., yellow birds accelerate
when the player taps the screen during flight) and proper-
ties (e.g., TNT objects explode when damaged by birds or
other falling objects). Science Birds is a challenging do-
main for AI agents due to the continuous action space and
the large state space of resulting block configurations, and
has maintained a yearly competition since 2012 [Renz et al.,
2019].

Our agent interacts with the game through a server with
the following API. After the level is loaded, the agent is
given a list of objects with their outer hull polygons and
a color-map that specifies the amount of each color in in-
side the polygon2. The agent specifies shots by providing an
(X,Y ) position to launch from and a time t to tap the screen.
The screen tap initiates actions based on bird type (e.g., a
bomb bird will explode a few seconds after it is tapped).
After each action, the score is updated.

We are studying novelty as something that is introduced
into the environment while an agent is performing tasks. In
the context of Science Birds, the agent plays a sequence of
levels. At some point in the sequence, novelty is introduced
and all subsequent levels behave with the novelty. An ex-
ample of novelty is the introduction of a new bird type with
different dynamics and actions that would be available in
future levels. Our objective is to play the game, detect the
novelty when it occurs, and respond to it. The result of this

2Raw pixels for the entire image are also available, but we do
not use them in our system.

https://en.wikipedia.org/wiki/Bughouse_chess
https://en.wikipedia.org/wiki/Bughouse_chess


Sc
or

e

Time

Novelty 
introduction

HYDRA

SOTA

Initial 
impact

Novelty 
recovery

Overhead

Figure 1: A sample Science Birds problem (left) and relevant metrics (right). While we expect that a SOTA agent will
outperform novelty responsive AI systems (e.g., HYDRA) as it is would be tailored to the particular domain, we expect
HYDRA to recover more quickly after novelty is introduced.

learning will enable our agent to mitigate the effects of the
novelty on its performance and, when possible, take advan-
tage of new opportunities available due to the change in the
environment on future problems in the sequence. Figure 1
illustrates this process and how we intend to measure per-
formance against a state-of-the-art AI system that is not de-
signed to respond to novelty.

3 Proposed Approach
Figure 2 shows an overview of our proposed approach. Sci-
ence Birds provides the score for the level and a descrip-
tion of the objects. HYDRA classifies these objects into
types in its domain theory, and assesses if they have be-
haved consistently with the domain theories expectations.
These expectations could be driven by quantitative or qual-
itative composable models. Any inconsistencies are local-
ized to model components using model-based diagnosis and
learning problems are formulated. For example, if HYDRA
does not understand why a structure has not fallen over, a
possible explanation is that there is an unseen rigid object
supporting it. Then, HYDRA may generate a plan to satisfy
the learning goal by shooting a bird in that area and look for
evidence of rigid object mechanics.

4 Adapting to Novelty with PDDL+
HYDRA’s approach is centered around a planning module
tasked with solving Science Birds levels. Science Birds is
an interesting planning problem containing non-linear dy-
namics as well as both discrete and continuous behaviour.
Unlike many other planning problems where most world
changes are the direct result of agent actions, Science Birds
dynamics are governed by chains of reactions triggered by
agent actions. These reactions are difficult to predict with-
out modeling the physics of the Science Birds world.

Due to these properties, we chose PDDL+ [Fox and Long,
2006] as the planning formalism for HYDRA. PDDL+ al-
lows modelling of the environment, its dynamics and be-
haviour, as well as the agent’s interactions with the envi-
ronment. The defining characteristic of PDDL+ is the abil-
ity to model exogenous behaviour with discrete events and
continuous processes. Events apply discrete effects instan-
taneously, whereas processes apply changes continuously
while their preconditions hold. The agent has no direct con-
trol over processes and events, and can only interact with ex-
ogenous activity indirectly. As noted above, Science Birds

is overwhelmingly governed by processes and events. Thus,
PDDL+ is an attractive language for the Science Birds do-
main theory.

To date, we have created a PDDL+ model that solves a va-
riety of Science Birds levels. However, planning in PDDL+
can result in search-space explosion due to the tight integra-
tion of planning and scheduling over a continuous timeline.
To improve the performance, our Science Birds model re-
lies heavily on the Theory of Waiting [McDermott, 2003]
and currently employs only one action responsible for the
release of the bird from the slingshot. This reduces the num-
ber of decision points in the search, which significantly re-
duces the branching factor. For the dynamics, events repre-
sent collisions between birds, pigs, blocks, platforms, TNT
blocks, and the ground, whereas processes capture the bal-
listic motion of birds under gravity and changing the pos-
sible angle of launch. When our agent receives a Science
Birds level to play, it automatically translates it to a PDDL+
planning problem under our Science Birds PDDL+ model.
Then, we use an off-the-shelf PDDL+ planner, UPMurphi
[Della Penna et al., 2009], to obtain a plan.

4.1 Hypothesis-Guided Model Revision
An advantage of having a PDDL+ model is that it enables
simulating the expected state of the world over time after
an action is performed. HYDRA leverages this capability
to detect novelty, as follows. After HYDRA performs an
action, it observes the game and collects periodic states from
the game API. Then, HYDRA checks if this sequence of
states is consistent with the sequence of states it expected
to observe according to the model. A novelty is detected
when the discrepancy between the observed and expected
sequence of states exceeds a predefined threshold.

Following Langley’s recent Theory of Environmental
Change [Langley, 2020], we view novelty as a transforma-
tion of the underlying world model. To adapt to novelty,
HYDRA must update its domain model. To accomplish
this, it searches for a hypothesis about the transformations
that would be consistent with the observations. HYDRA
uses a set of Model Manipulation Operators to transform the
PDDL+ domain theory. To check if a sequence of MMOs
is consistent with the observations, we apply them to the
current PDDL+ model, simulate the expected sequence of
states according the modified model, and check if this se-
quence of states is consistent with the sequence of states



Aligned Model Representations

Figure 1: Screenshot of a level from the Angry Birds game.

effective and promising means of developing a successful
AI agent for both Angry Birds and other real-world physics
problems.

Background
Angry Birds Game
Angry Birds is a popular physics-based puzzle game in
which the player uses a slingshot to shoot birds at pigs, with
structures composed of blocks and other physical objects
protecting them, see Figure 1. The goal of each level is to
kill all pigs using a set number of birds provided. All objects
within the level have properties such as location, size, mass,
friction, density, etc., and obey simplified physics principles
defined within the game’s engine. Blocks are also made of
one of three materials, wood, stone or ice. Different bird
types are available with different properties, and pigs are
killed once they take enough damage from either the birds
directly or by being hit with another object. The player can
choose the angle and speed with which to fire a bird from the
slingshot, as well as a tap time for when to activate the bird’s
special ability if it has one, but cannot alter the ordering of
the birds or affect the level in any other way. The difficulty of
this game comes from predicting the physical consequences
of actions taken, and accurately planning a sequence of shots
that will result in success. Points are awarded to the player
once the level is solved based on the number of birds re-
maining and the total amount of damage caused.

AIBirds Competition
In this competition, agents are tasked with playing a set
number of unknown Angry Birds levels within a given time,
attempting to score as many points as possible in each level.
The exact location and parameters of certain objects, as well
as the current internal state of the game, are not directly ac-
cessible. Instead, information about the level is provided us-
ing a computer vision module, effectively meaning that an
agent gets exactly that same input as a human player. Agents
are required to solve these levels in real-time and can at-
tempt levels in any order and as many times as they like.
Once the time limit has expired the maximum scores that
an agent achieved for each level are summed up to give its
final score. Agents are then ranked based on this value and
after several rounds of elimination a winner is declared. The
eventual goal of this competition is to design AI agents that
can play new levels as well as or better than human players.

Agent Discussion
Our proposed hyper-agent selects from a portfolio consist-
ing of the eight agents that participated in the 2016 AIBirds
competition. Whilst there have been over 30 different agents
that have participated in the AIBirds competition over the
years, the agents from the latest competition represent the
best that are currently available. A brief description of each
of these agents is given below, with full details available on
the AIBirds website (AIBirds 2017).

2016 Competition Past Agents
Naive Agent The Naive agent is provided to all competi-
tion entrants as a useful starting point upon which to create
their own AI agent. It fires the currently selected bird at a
randomly chosen pig using either a low or high trajectory
(also chosen at random). No other objects apart from the
current bird and pigs are used when determining a suitable
shot, and tap times are fixed for each bird based on the total
length of its trajectory.

Datalab Agent The Datalab agent uses a combination of
four different strategies when attempting to solve a level.
These can be described as the destroy pigs, building, dy-
namite and round blocks strategies. The decision of which
strategy to use is based on the environment, possible tra-
jectories, currently selected bird and remaining birds. The
destroy pigs strategy attempts to find a trajectory that inter-
sects with as many pigs as possible. The building strategy
identifies and targets groups of connected blocks that either
protect pigs or are near to them. The dynamite strategy ranks
each TNT box within the level based on the number of pigs,
stone blocks and other TNT boxes that are nearby. The round
blocks strategy attempts to either hit round blocks directly or
else destroy objects that are supporting round blocks.

IHSEV Agent The IHSEV agent creates an internal
Box2D simulation of the level, within which it tries out
many shot angles and tap times. The shot that destroys the
most pigs is always selected. However, the simulation is not
a perfect representation of the environment. The agent does
not use any information about the number or type of remain-
ing birds when deciding which shot to take. A future plan to
adapt the agent’s environmental simulation based on the de-
viation between the actual and expected outcome of a shot
was proposed but has not yet been implemented.

Angry-HEX Agent The Angry-HEX agent uses HEX
programs to deal with decisions and reasoning, while the
computations are performed by traditional programming.
HEX programs are an extension of answer set programming
(ASP) which use declarative knowledge bases for informa-
tion representation and reasoning. The Reasoner module of
this agent determines several possible shots based on differ-
ent strategies. These shots are then simulated using a Box2D
simulation, with the shot that kills the most pigs being se-
lected as the ideal action (number of destroyed blocks being
used as a tiebreaker). The trajectory module of the base pro-
gram was improved to take the thickness of the currently
selected bird into account, as well as the ability to select
several different points on a block as the target location.

235

Vision 
(DL)

Novelty Detection
Consistency-based 
Model Formulation

• Entity detection
• Qualitative spatial 
abstractions

Interaction
(Pre/Post)

Activity 
(Comic Graphs)

Control
(Skills)

Novelty Response
Hypotheses-guided Model Revision

• Model-based diagnosis
• Learning problem formulation

Mechanics
(Assumptions)

Action Execution
• Strategic interaction selection 
• Lifelong learning of parameterized skills 
• Zero-shot transfer

Novelty 
Generators

Objects, 
Score 

Launch bird 15º

Unstable structure
Novelty detected

Train new classifier

Target “empty” area

Quantitative,
Intermittent

Figure 2: The HYDRA architecture draws on multiple model representations to plan actions, observe their effects, and focus
learning.

Novelty types PDDL+ domain adjustment Novelty example in Science Birds
Spatio-temporal Transformation Fluent changes Increased the force of gravity
Structures Transformation New objects and fluents Introduced new type of bird
Processes Transformation New and/or changing existing processes Introduced wind
Constraints Transformation New preconditions and/or changed events Only explosions can kill pigs

Table 1: Description of example novelties that can be encountered in Science Birds, changes to the PDDL+ model required
to accommodate them, and their corresponding novelty types defined by [Langley, 2020].

observed in the game. After a consistent model has been
found, it is used by HYDRA to generate future plans.

There may be multiple models consistent with the cur-
rent observations. Also, new novelties may occur over time.
Therefore, the process of detecting novelties and adapting
HYDRA’s PDDL+ model to them is continuous: after every
action HYDRA performs, it checks if the current observa-
tion is consistent with its model. If it is not, it searches for a
sequence of MMOs that would yield a model that is consis-
tent with the current and previously collected observations.

4.2 Searching for Consistent PDDL+ Models and
Applicable MMOs

A future objective of this work is to characterize the neces-
sary and sufficient types of MMOs that are needed to adapt
to different types of novelties. In our current implemen-
tation, we focused in simple MMOs that modify the value
of constant fluents in the PDDL+ model such as the force
gravity applies on flying objects, the size of the birds, and
the speed in which the slingshot’s angle is adjusted. Table 1
maps possible types of MMOs to types of novelties as de-
fined by Langley [Langley, 2020] along with examples from
Science Birds.

The number of MMOs may be very large and thus finding
a sequence of MMOs that may yield a consistent model is
a challenging combinatorial search problem. We expect to
need heuristics to guide the search in an efficient manner.
In our current implementation, we run a Greedy Best-First
Search algorithm that uses a heuristic that prefers shorter

sequences of MMOs that yield models that are more consis-
tent.

4.3 Case Study: Auto-Tuning Gravity

To demonstrate how HYDRA works, we performed the fol-
lowing case study. The agent is given a simple Science Birds
level shown in Figure 3, in which it needs to hit a pig that is
elevated on some platform. We intentionally set the agent’s
PDDL+ model to be incorrect by setting the force it assumes
gravity applies on objects to be significantly higher than its
real value. Using this incorrect PDDL+ model, the agent
fails to create a plan that hits the pig, since it cannot throw
the bird strong enough to overcome the force of gravity it
assumes. In such a case, the agent chooses an arbitrary ac-
tion, which in this case was to throw the bird at a very high
angle. The resulting trajectory is shown in Figure 3 (left).
Then, HYDRA uses the observed trajectory of the bird to
correct its PDDL+ model. Specifically, the MMOs we used
were to modify the gravity parameter by either adding or
subtracting 30 from its value. HYDRA uses these MMOs
to search for a PDDL+ model that is consistent with the ob-
served trajectory. In this case, HYDRA is able to find such
a model, modifying its gravity parameter to a value that is
much closer to the correct value. Using the revised model,
HYDRA is now able to create a plan that accurately shoots
the pig and wins the game, as shown in Figure 3 (right).



Figure 3: Example of automated model-repair with HYDRA. The left figure shows the first shot, in which HYDRA assumes
an incorrect gravity factor. The right figure shows the second shot, after HYDRA diagnosed its incorrect assumption about
gravity and corrected it accrodingly.

5 Discussion
This early stage work opens up a number of research ques-
tions:

1. Are MMOs and search heuristics domain independent?
That is, as we transition the technique to other domains
(e.g., Minecraft, inverted pendulum control, and simu-
lated driving) will the MMO’s change?

2. How much of the domain revisions will be done within
the PDDL+ model versus in other models in the sys-
tem? For example, while the classification task of map-
ping observations to types is not performed in PDDL+,
the types themselves are.

3. How to incorporate agent experience in the model re-
vision decisions? Since our model is an approximation
of the world, constantly revising it due to noise would
not make sense.

4. How to account for other agents? We propose to mod-
eling the behavior of other agents through their chang-
ing configurations with other objects in the environ-
ment, a model representation we call comic graphs
[Klenk et al., 2017].

5. How to integrate PDDL+ planning with reinforcement
learning techniques? Parameterized skills [Rostami et
al., 2020] provide a method for learning detailed action
models that may be organized using planning.

As part of the DARPA SAIL-ON effort, we will explore
these questions over the next three years.

Acknowledgments
This work was supported by the DARPA SAIL-ON program
under contract HR001120C0040. The views and conclu-
sions in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressly or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government

References
[Della Penna et al., 2009] Giuseppe Della Penna, Daniele

Magazzeni, Fabio Mercorio, and Benedetto Intrigila. Up-
murphi: a tool for universal planning on pddl+ prob-
lems. In Nineteenth International Conference on Auto-
mated Planning and Scheduling, 2009.

[Fox and Long, 2006] Maria Fox and Derek Long. Mod-
elling mixed discrete-continuous domains for planning.
Journal of Artificial Intelligence Research, 27:235–297,
2006.

[Klenk et al., 2017] Matthew Evans Klenk, Shiwali Mo-
han, Johan De Kleer, Daniel G Bobrow, Tom Hinrichs,
and Ken Forbus. Collaborative autonomy through ana-
logical comic graphs. In Workshops at the Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[Langley, 2020] Pat Langley. Open-World Learning for
Radically Autonomous Agents. AAAI, 2020.

[McDermott, 2003] Drew V McDermott. Reasoning about
autonomous processes in an estimated-regression plan-
ner. 2003.

[Renz et al., 2019] Jochen Renz, XiaoYu Ge, Matthew
Stephenson, and Peng Zhang. Ai meets angry birds. Na-
ture Machine Intelligence, 1(7):328–328, 2019.

[Rostami et al., 2020] Mohammad Rostami, David Isele,
and Eric Eaton. Using task descriptions in lifelong
machine learning for improved performance and zero-
shot transfer. Journal of Artificial Intelligence Research,
67:673–704, 2020.

[Witty et al., 2018] Sam Witty, Jun Ki Lee, Emma Tosch,
Akanksha Atrey, Michael Littman, and David Jensen.
Measuring and characterizing generalization in deep re-
inforcement learning. arXiv preprint arXiv:1812.02868,
2018.


	Introduction
	Problem Definition
	Proposed Approach
	Adapting to Novelty with PDDL+
	Hypothesis-Guided Model Revision
	Searching for Consistent PDDL+ Models and Applicable MMOs
	Case Study: Auto-Tuning Gravity

	Discussion

