
Neural-Symbolic Fault Tolerant Control for Quadcopter Trajectory-Following
Tasks

Yves Sohège1 and Marcos Quiñones-Grueiro2 and Gregory Provan1

1Computer Science and IT, University College Cork, Cork, Ireland
e-mail: {y.sohege,g.provan}@cs.ucc.ie

2ISIS, Vanderbilt University, Nashville, USA
e-mail: {marcos.quinones}@vanderbilt.edu

Abstract
Many fault-tolerant control (FTC) applications
are moving from a traditional model-based ap-
proach to one that learns the FTC actions, termed
data-driven FTC. While data-driven FTC does not
require models, it requires a significant amount of
nominal and fault data, and training may be ex-
pensive. We develop an architecture for combin-
ing model-based and data-driven FTC that aims
to make use of the best aspects of each ap-
proach. The architecture learns a supervisory
controller for switching weights across multiple
model-based low level controllers. We demon-
strate our approach on learning trajectories for a
quadcopter that must follow a safe region even
though it experiences rotor faults. We empiri-
cally show that our hybrid learning approach con-
verges to safely follow given trajectories, whereas
a purely data-driven approach requires signifi-
cantly more training to converge than the hybrid
approach (if it converges at all).

1 Introduction
Developing models for fault tolerant control of complex
systems is challenging, in that model-based approaches
suffer from models being incomplete and often not fully
suited to real-world, dynamic environments. Data-driven
approaches, on the other hand, require significant amounts
of data, are time-consuming to train, and are limited to rel-
atively simple systems. In this paper, we propose an ap-
proach that integrates model-based and data-driven control
methods, in an attempt to leverage the best of both methods.
We directly address how to integrate model-based inference
and learning, known as neural-symbolic learning (Besold et
al., 2017) or model-based/physics-guided learning (Rai and
Sahu, 2020).

Currently a great deal of research is directed towards this
topic. The majority of work in neural-symbolic diagnosis
at present focuses on using physics and deep learning in
condition-monitoring of rotating machines, e.g., (Wang et
al., 2016); this approach is called physics-based preprocess-
ing in (Rai and Sahu, 2020). This work uses physical princi-
ples of machinery and signal processing to assist with deep
learning methods for diagnosing faults in simple machines,
e.g., (Luo et al., 2020; Waziralilah et al., 2019).

A second approach, less common in diagnosis, is con-
straining deep learning with physical principles (Nautrup et

al., 2020; Iten et al., 2020). Here, physics-based equations
are used as an additional regularization term in the loss func-
tion of the neural networks. This approach has been used for
diagnosis (Bunte et al., 2019; Zhai et al., 2016) and progno-
sis (Chao et al., 2020).

We adopt an approach that is different to either of these
methods: we decompose the fault-tolerant control (FTC)
task into high-level and low-level inference, and use well-
known physical controllers for the low-level control, and
learning for the high-level FTC. This approach enables us to
employ well-understood PID controllers with well-defined
input parameters for low level control, and we then learn to
tolerate faults using a high-level controller. Our approach is
significantly simpler than methods that require learning all
control parameters for FTC applications, since we reduce
the number of parameters to be learned to a small number
of high-level (abstracted) parameters.

We demonstrate our approach on a quadcopter that is sub-
jected to rotor faults of various magnitudes.

Our contributions are as follows.

• We develop an architecture for combining model-based
and data-driven control for FTC that aims to make use
of the best aspects of each approach;

• We demonstrate our approach on learning safe trajec-
tory following for a quadcopter that has significant
faults in its rotors;

• We empirically show that our hybrid learning approach
converges to safely follow given trajectories whereas
a purely data-driven approach requires significantly
more training to converge than the hybrid approach (if
it converges at all).

This article is organised as follows. Section 2 describes
the FTC approach from purely model-based and data-driven
frameworks, and how we integrate these for a hybrid ap-
proach. Section 3 introduces the quadcopter and the faults
we inject. Section 4 outlines the experiments that we per-
form in trajectory following given rotor faults. Section 5
presents our empirical results. We conclude in Section 6.

2 Approach
This section describes the general issues concerning hybrid
learning for fault-tolerant control (FTC).

FTC is the task of using an anomalous observation st ∈
S of a system at time t (indicating a fault state) to generate
a control at ∈ A that drives the system to a desired ("safe")
state st+1 ∈ S . We can denote this as a function fθ : st×

θ → at, where θ denotes the parameters of function f that
drive the system to a safe state such that fT : st × at →
st+1,with fT representing the system dynamics also known
as state transition function of a system.

Model-based FTC
The typical FTC algorithm uses a forward model to isolate
a fault, and then generates a control output given that fault.

A model-based (MB) diagnosis forward model fθTT maps
state variables st and model parameters θT to outputs (ob-
servable variables ŷ): fθTT : st×θT → ŷt. Predictive mod-
eling in a model-based approach entails calibrating model
parameters θT using observational data. The diagnosis pro-
cess consists of using the residual, or difference between
observed data y and predicted data ŷ, to diagnose the fault
responsible for the anomalous readings νt (Blanke et al.,
2016).

The FTC aspect of this approach means to adapt the pa-
rameters θMB of a control law represented by a function
fMB such that

fMB : νt × θL → at, (1)
where νt represents the information of the diagnosed fault.

Data-Driven FTC
We formulate our data-driven approach in terms of an agent
using reinforcement learning (RL). RL is a branch of ma-
chine learning concerned with the design of methods that
allow an agent to learn how to solve a task by interacting
with an environment. At each time step t, the agent observes
the state of the environment st ∈ S and it generates an ac-
tion at ∈ A. The agent then receives information about the
next state st+1 of the environment and an immediate scalar
reward rt ∈ <. The decision made by the agent is based on
a policy function fML : S → A that maps the state space to
the action space.

The environment is modeled as a Markov decision pro-
cess (MDP) defined as follows:
Definition 1 (Markov Decision Process). A Markov deci-
sion process is defined by a four tuple: M = {S ,A,T ,R}
where S represents the set of possible states that the environ-
ment can reach. The transition function T : S × A× S →
[0, 1] estimates the probability of reaching state s′ at time
t + 1 given that action a ∈ A was chosen in state s ∈ S
at decision epoch t, T = P (s′|s,a) = P{st+1 = s′|st =
s,at = a}. The reward function R : S × A→ < estimates
the immediate reward R ∼ r(s,a) obtained from choosing
action a in state s.

A task T is defined in this context by the tuple
T = (RT , PT (st), PT (st+1|st,at), H) (2)

where RT is a reward function, H represents the duration
of the task, and PT (st) and PT (st+1|st,at) determine the
dynamic of the system for task T .

The goal of the agent is to learn an optimal policy func-
tion fθHML that maximizes the expected return (the cumula-
tive sum of rewards) for a given task T .

V f
θH
ML(st) = max

θH∈ΘH
V f

θH
ML(st) , ∀st ∈ S (3)

where V f
θH
ML : S → R is called value function and it is

defined as

V f
θH
ML(st) = E

[
H∑
i=0

γiR(si,ai)|s0 = st

]
, ∀st ∈ S

(4)

where 0 < γ ≤ 1 is called the discount factor, and it deter-
mines the importance assigned to future rewards such that it
decays with time.

In deep RL, we learn a neural network model fθHML with
parameters θH that represents the optimal policy function
which solves the task T such that

fML : st × θH → at. (5)

Hybrid FTC
In our hybrid approach, we develop a hybrid model that
composes a model-based and a data-driven model. We use
the output of fMB as an input to fML, i.e.,

fHybrid : st × νt × (θL × θH)→ at, (6)

where fHybrid = fMB ◦ fML, and (θH × θL) is the com-
posite parameter space. The machine learning component
will thus encapsulate the remaining unmodeled complexity
of the system in a lumped form. In this approach, the model
acts in a complementary fashion to enable adequate FTC.

The key is to define a compositional approach that takes
advantage of each approach. The next sections shows the
architecture that we use for this decomposition.

3 Quadcopters
3.1 Quadcopter Dynamics
Quadcopters are unmanned aerial vehicles that use four pro-
pellers to maneuver and have gained increased attention in
the research community in recent years. These vehicles have
only four actuators used to control six variables, the coordi-
nates x, y, and z, and the roll, pitch, and yaw angles of the
quadcopter, denoted φ, θ, and ψ, respectively. The dynamic
equations of a quadcopter are complex, due to the highly
coupled state-space. Due to space limitations, we give a
brief summary of quadrotor dynamics and details of how
rotor faults are represented, and refer the reader to (Özbek
et al., 2016) for details.1

We define the dynamics of the quadcopter in the non-
linear discrete state space form

st+1 = f(st) + g(st)(1− ς)at, (7)

where st = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T is the state vector,
control input at = [U1 U2 U3 U4]

T = %(υ1 υ2 υ3 υ4),
% is a non-linear function in the angular velocity of motor i,
and we denote a multiplicative fault model with parameter
0 ≤ ςi ≤ 1 for i = 1, ..., 4, where ςi = 0 corresponds to
nominal function and ςi = 1 to total failure.

3.2 Architecture
A quadcopter is a highly-coupled, under-actuated, nonlinear
system whose control architecture can be divided into two
subsystems: an attitude system and a position system. The
rotational motion, also known as attitude, is independent of
the position, but the translational motion is dependent on the
attitude of the aircraft. Using this, we can derive the motion
of the quadrotor given the position and attitude and hence
define inner- and outer-control loops as the attitude and po-
sition control, respectively. The physics of a quadcopter
model are well understood, and an industry-standard control

1The Python-based simulation codebase necessary
to run the experiments in this article is available under
github.com/YvesSohege/DX20-Simulation.

https://github.com/YvesSohege/DX20-Simulation

Figure 1: Two Control architectures for quadcopters show-
ing Data-driven control (red) and Model-based control
(blue) parts.

approach is to use PID or PD controllers for both low-level
inner- and outer-loop control (Özbek et al., 2016). Fault tol-
erance is typically achieved by tuning additional PID con-
trollers and using a residual-based high-level (supervisory)
controller that switches between active controllers.

Figure 1 (top) shows a data-driven architectures that can
be used for quadcopter control, where a neural network
learns all control parameters in a single black-box model.
The issue with this learning task for complex domains is the
size of the parameter space and of the data required. Figure
1 (bottom) shows a hybrid approach, where for low-level
control we use a model-based PID architecture that decom-
poses the system into inner- and outer-loop sub-controllers,
using methods common to control theory, e.g., (Xia et al.,
2017). A high-level data-driven controller then learns to
tune the low-level architecture.

When replacing any part of the lower-level control loop
with data-driven approaches, several challenges arise: (1)
whereas physics based stability proofs exist to ensure real-
world safety, data-driven controllers do not have such proofs
of stability and stability cannot be empirically guaranteed
outside of the training scenarios; (2) training is usually con-
ducted in high-end simulation environments and then trans-
ferred to a real quadcopter, which creates a well known sim-
ulation to reality gap; (3) data-driven controllers must be
re-trained when the environment changes.

To address these drawbacks, we reformulate our sys-
tem as a hierarchical control architecture with a subset of
high- (θH) and low-level (θL) parameters, i.e., such that
θ = θH ∪ θL. We use our physics-based controller to take
care of low-level control and hence only the parameters of
the high-level controller must be learned. Our task is thus

reduced to learning θH and tuning θL. The benefit of this
approach is that (1) we can use a low-level, physics-based
controller whose properties as well understood and whose
parameters, θL, are relatively easy to tune using well known
methods for different scenarios, and (2) we can learn over
a significantly smaller parameter space (|θH | � |θ|) for a
controller whose physics is less well understood.

3.3 Comparison of Learning Tasks
This section compares the parameter spaces of our learn-
ing tasks, i.e., purely data-driven vs. hybrid learning pa-
rameter spaces. The full state space is given by the state
vector s = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T , which is a 12-
tuple. If we want to achieve trajectory tracking, we need
to add additional information about the target location, i.e.,
[xtarget, ytarget, ztarget]. Hence the full length vector has
15 parameters, each with a continuous-valued range of pos-
sible values.

Model-Based
In a purely model-based FTC approach that uses PID control
at the low level and a supervisory controller, we must manu-
ally tune the PID controllers and the supervisory controller.
Further, if we pre-define the fault controllers for the rotor
faults, we must tune these controllers as well. The drawback
to using specific fault controllers is the cost of tuning each of
these controllers, as well as the limitation of the approach to
single-fault scenarios, since it is impossible in typical con-
trol frameworks to "merge" the outputs of these controllers
(Özbek et al., 2016). To overcome this, a technique known
as Blended Control (Provan and Sohège, 2019) which uses
a convex combination of controller outputs is used in this
article. However, even for this latter approach one cannot
adapt to changing environmental conditions or novel faults,
as one can by dynamically learning controllers. PID con-
trollers require three gain parameters to be tuned, for which
established mechanisms exist (Lunze, 2016).

Data-Driven
For the data-driven task, we must learn the direct mo-
tor commands applied to the rotors of the quadcopter, i.e
at = [U1 U2 U3 U4]. We limit the speed of each of the four
rotors to 10000 rpm, creating an action space of four actions
with range [0-10000]. In the case of optimal attitude control,
there is little tolerance and flexibility as to the sequence of
control signals that will achieve the desired attitude (Koch
et al., 2019). For example, to achieve a stable hover all four
motors much spin at exactly the same speed, which is trivial
to define for model-based methods but difficult for a data-
driven controller to learn due to the large continuous state
and parameter space.

Hybrid
For the hybrid task, the supervisory controller uses a
weighted combination of pre-defined PID controllers (So-
hège et al., 2020). This Randomized Blended Control
(RBC) architecture samples the blending weights used for
the convex controller combination from a probability distri-
bution (Provan and Sohège, 2019). The learning task in the
hybrid approach is to learn an optimal probability distribu-
tion for RBC which can be defined by mean and standard
deviation, θH = [µ, σ]. This reduces the size of the ac-
tion space of the agent to two parameters with range [0,1].

We tune the parameters for the low-level model-based con-
trollers, θL, using standard mechanisms prior to training the
high-level controller.

Learning randomized blended control is thus a signifi-
cantly smaller problem (in terms of parameter space) than
data-driven methods; it also has an inherently safe action
space, i.e., there is no way the agent’s actions can crash the
quadcopter unless one of the low-level controllers performs
an unsafe action and even then there is only a small ran-
dom chance that this action is fully selected by the high-
level controller.

4 Hybrid Quadcopter Control
In this section, we will describe the implementation of the
presented approach on top of an open source Python-based
Quadcopter simulation (Majumdar, 2018). The descrip-
tion will be broken down into the model-based low-level
control architecture, the learning-based high-level controller
and how the two components integrate together through ran-
domized blended control.

4.1 Model-based Low-Level Control
Researchers have successfully learnt the dynamics model of
quadcopters through DRL but they are not comparable to
traditional controllers yet (Becker-Ehmck et al., 2020; Koch
et al., 2019). Our decomposition of the FTC task enables the
integration of learning-based low-level control mechanisms
into our approach, once they become a competitive solu-
tions. For nominal trajectory tracking only a single roll and
pitch controller is needed. Fault tolerance is provided by
additional PID controllers tuned for general fault conditions
such as a high-gain controller that responds more aggres-
sively to wind disturbances or rotor faults. In this article,
we focus on roll and pitch attitude control and hence add
a high-gain roll and pitch PID controller for more aggres-
sive maneuvers. For clarity we referred to this controller as
C1 and for the nominal conditions (lower-gain) controller as
C2.

Axis of control P I D
X-Position 300 0.04 450
Y-Position 300 0.04 450
Z-Position 7000 4.5 5000
Roll - C1 24000 0 12000
Pitch - C1 24000 0 12000
Roll - C2 4000 0 1500
Pitch - C2 4000 0 1500

Yaw 1500 1.2 0

Table 1: PID parameters for low-level model-based control archi-
tecture.

4.2 Learning-based High-Level Control
We use an actor-critic neural network implemented using
the stable-baselines framework (Hill et al., 2018). This net-
work consists of two hidden layers of 64 neurons. The
observation space of the agent consists of a subset of
the state variables as well as the target position, namely
[x y z φ θ ψ xtarget ytarget ztarget]. Quadcopter FTC
requires real-time actions from the high-level controller, as
any delays in action during a fault could, for example, cause
a crash. This direct control approach avoids delays associ-
ated with fault isolation in traditional FDI methods.

4.3 Randomized Blended Control
RBC draws the weighting vector from a probability distri-
bution defined by mean µ and standard deviation σ at each
cycle of the control loop. In this work the high-level con-
troller learns the parameters defining the underlying proba-
bility distribution used for RBC in real-time as faults occur.
RBC has been shown to be stochastically stable (Provan and
Sohège, 2019), so flight stability is ensured even when it
is learning to deal with non-terminal faults, i.e., faults for
which no control is viable.

4.4 Training Details
We enforce a 1 meter safety region around the trajectory
to evaluate control performance under fault scenarios. The
task of the agent is to learn to distribute control in such a
way that the quadcopter stays inside the safety region when
experiencing faults. A negative reward is applied when the
quadcopter drifts outside the safety region and a large pos-
itive reward is received when the quadcopter completes the
entire trajectory inside the safety region. The trajectories
used for training need to be diverse enough to expose the
agent to a large variety of experiences. In this work, we use
straight-line trajectories to a randomized destination point
within a 7-meter bounding box. Proximal Policy Optimiza-
tion (PPO) is selected as the training algorithm, with a learn-
ing rate of 0.1.2 The agent was trained for a total of 10 mil-
lion time steps, which is approximately 12000 episodes.

Fault Generation
Rotor faults are one of the most common faults experienced
by quadcopters and the focus in this work. We investi-
gate faults in any rotor and up to 30% loss of effectiveness
(LOE). Greater than 30% faults will cause a crash, and 20%
causes severe disruption to the flight path but is marginally
controllable by the higher-gain controller. Instead of expos-
ing the agent to the entire fault space randomly, we system-
atically divide the fault space into levels representing incre-
ments of 5% in the fault magnitude. We increase the fault
level when the agent does not leave the safe zone for 20
consecutive episodes. The reward obtained for complet-
ing a trajectory is proportional to the level. Hence, as the
agent progresses to higher fault magnitudes the reward also
increases as seen in Fig. 2, where each data point shows
the cumulative reward over the last 20 episodes. However,
larger faults create more severe disturbances which is why
episodes fail towards the end of the training cycle. Since the
faults are of the same type but varying magnitudes, infor-
mation learned on lower levels is relevant on higher levels.
After 6000 episodes the mean cumulative rewards stops in-
creasing showing that the agent converged.

4.5 Data-Driven Quadcopter Controller
To date, fully data-driven controllers are restricted to sim-
ple tasks, e.g., learning how to hover a quadcopter and sim-
ple trajectory tracking to a location (Becker-Ehmck et al.,
2020). Due to the lack of guarantees of stability (as exists
for many model-based controllers), there exist no guaran-
tees on the actions a learned controller will perform when
presented with novel faults or unmodelled dynamics, as we
do in our experiments.

2Fine-tuning the parameters of a learning algorithm is a chal-
lenging task which will be investigated in future work.

Figure 2: Mean Cumulative Reward obtained over 5 inde-
pendent training cycles of 12000 episodes. Scores below 0
indicate the quadcopter left the safe zone during the episode.

5 Experiments
This section compares the performance of the trained agent
with that of (a) the high-gain and low-gain PID controllers
alone as well as (b) a uniform randomized blended con-
troller. Intuitively, we expect the agent to outperform the
uniform randomized approach, since this would show that
the agent has learned an improved probability distribution.

5.1 Experimental Design
To validate these hypotheses, we ran experiments on a test
trajectory, a 5-meter diamond, which is significantly more
difficult than the straight line training trajectories. Faults at
two separate time points are investigated, T1 = 1800 and
T2 = 2300. We test faults of magnitude 0%, 10%, 20% and
30% , where 0% indicates nominal control, on all rotors at
each time point. As a performance metric we use the total
time outside the safety bound so the smaller the better.
Figures 3 shows the summarized experimental results.

5.2 Parameter Spaces
Data-driven approaches typically use all of the parameters
available as observation and generate the four motor com-
mands as the action. The minimum observation vector
needed is the full state vector of size 15 and most approaches
use additional parameters (Hwangbo et al., 2017). The hy-
brid approach only requires a small subset of parameters that
are specific to the task since flight control is already estab-
lished. We use an observation space of 9 parameters and
an action space of 2 parameters creating a smaller problem
compared to the purely data-driven approach.

5.3 Trajectory Following Results
Hybrid Approach
We will now discuss the results presented in Figure 3. There
are four groups of bars for each chart representing one fault
level. Each bar represents a different controller C1, C2,
RBC and the trained hybrid approach, on that fault level.
Each coloured stack in a bar represents which rotor experi-
enced the fault.

The left-most bar group in the chart represent nominal
conditions (0%). As expected, the bars in this group are
identical, as no fault occurs. This also shows that the smooth

Figure 3: Experimental results showing the amount of time
a quadcopter was outside of the safety bound for rotor faults
of varying magnitudes. Lower is better.

controller (C2) is much better under nominal conditions
as the high-gain controller naturally overshoots the way-
points. This makes C1 undesirable as a controller under
nominal conditions. However as the fault magnitudes in-
crease we see that C2’s performance drastically degrades.
This is because the controller cannot respond aggressively
enough to correct the effect of the higher rotor fault. The
high-gain controller is much more robust to rotor faults as
the naturally aggressive reactions can mitigate rotor faults
quickly and performance is less affected.

The third bar in each bar group represents random
blended control, which samples from a uniform probabil-
ity distribution over the controllers. Uniform randomized
blended control outperforms both C1 and C2 on fault mag-
nitudes of 10% or higher. This shows how randomization is
able to utilize benefits from both controllers.

The fourth (right-most) bar in each group represents our
approach which significantly outperforms all other con-
trollers under all fault levels. The agent is able to very
quickly shift control to the aggressive controller to miti-
gate the fault and then continue using the nominal controller
when the system stabilizes. This allows our approach to pro-
vide good control under faults that would otherwise crash
the system. Under nominal conditions our approach per-
forms comparably to the better-performing individual con-
troller. This shows that the agent was successfully able to
learn how to parameterize the underlying probability distri-
bution used for RBC, and thus provides an exciting new way
to integrate model-based low-level control frameworks with
high level data-driven controllers.

Data-Driven Approach
We implemented a learning-based controller where a neu-
ral network generates four motor throttle commands, which
are applied directly. The full state vector and target loca-
tion are set as the observation vector. Even when we used
a simpler learned trajectory, a simple hover at a given alti-
tude, and increased the training length to 50 million steps
(5× as much as our approach, or 48 hours CPU-time), the
agent was unable to converge. There are several possible
reasons for this: (1) Parameter fine-tuning is needed such as
the learn rate, neural network size, etc.; (2) Reward shaping
- a well known open problem for complex control tasks; (3)
More training time/better hardware is needed.

6 Conclusion
We compared a purely data-driven FTC approach with a
neural-symbolic approach that uses an architectural integra-
tion of data-driven and model-based FTC. The architecture
uses models for low-level controllers, and learns a super-
visory controller for switching weights across multiple con-
trollers. We demonstrate our approach on learning trajectory
following for a quadcopter that follows a safe region even
through it experiences faults in its rotors. We empirically
show that our hybrid learning approach converges to safely
follow given trajectories, whereas a purely data-driven ap-
proach requires significantly more training to converge than
the hybrid approach (if it converges at all). The parameter-
space for the data-driven approach is significantly larger
than that of the hybrid approach, resulting in this increased
training challenge. Further, the hybrid approach inherits the
stability guarantees of the model-based component, whereas
there are no similar guarantees for the data-driven approach.

References
Philip Becker-Ehmck, Maximilian Karl, Jan Peters, and

Patrick van der Smagt. Learning to fly via deep model-
based reinforcement learning. 2020.

Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-
Uwe Kuehnberger, and Luis C. Lamb. Neural-symbolic
learning and reasoning: A survey and interpretation,
2017.

Mogens Blanke, Michel Kinnaert, Jan Lunze, and Mar-
cel Staroswiecki. Diagnosis and Fault-Tolerant Control.
Springer, 2016.

Andreas Bunte, Benno Stein, and Oliver Niggemann.
Model-based diagnosis for cyber-physical production
systems based on machine learning and residual-based di-
agnosis models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 2727–2735,
2019.

Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, and Olga
Fink. Fusing physics-based and deep learning models for
prognostics. arXiv preprint arXiv:2003.00732, 2020.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, and
Gleave. Stable baselines. https://github.com/hill-a/stable-
baselines, 2018.

Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco
Hutter. Control of a quadrotor with reinforcement learn-
ing. IEEE Robotics and Automation Letters, 2(4):2096–
2103, 2017.

Raban Iten, Tony Metger, Henrik Wilming, Lídia del Rio,
and Renato Renner. Discovering physical concepts with
neural networks. Physical Review Letters, 124(1), Jan
2020.

William Koch, Renato Mancuso, Richard West, and Azer
Bestavros. Reinforcement learning for UAV attitude con-
trol. 2019.

Jan Lunze. From fault diagnosis to reconfigurable con-
trol: A unified concept. In 2016 3rd Conference on Con-
trol and Fault-Tolerant Systems (SysTol), pages 413–421.
IEEE, 2016.

Yuan Luo, Ya Xiao, Long Cheng, Guojun Peng, and Dan-
feng Daphne Yao. Deep learning-based anomaly detec-
tion in cyber-physical systems: Progress and opportuni-
ties. arXiv preprint arXiv:2003.13213, 2020.

Abhijit Majumdar. Python Quadcopter Simulation, 2018.
Hendrik Poulsen Nautrup, Tony Metger, Raban Iten, Sofiene

Jerbi, Lea M. Trenkwalder, Henrik Wilming, Hans J.
Briegel, and Renato Renner. Operationally meaningful
representations of physical systems in neural networks,
2020.

Necdet Sinan Özbek, Mert Önkol, and Mehmet Önder
Efe. Feedback control strategies for quadrotor-type aerial
robots: a survey. Transactions of the Institute of Measure-
ment and Control, 38(5):529–554, 2016.

Gregory Provan and Yves Sohège. Fault-tolerant control
for unseen faults using randomized methods. In IEEE
SysToL, 2019.

Rahul Rai and Chandan K Sahu. Driven by data or de-
rived through physics? a review of hybrid physics guided
machine learning techniques with cyber-physical system
(cps) focus. IEEE Access, 8:71050–71073, 2020.

Yves Sohège, Gregory Provan, Marcos Quinones-Grueiro,
and Gautam Biswas. Deep reinforcement learning and
randomized blending for control under novel distur-
bances. In IFAC World Congress, 2020.

Jinjiang Wang, Junfei Zhuang, Lixiang Duan, and Weidong
Cheng. A multi-scale convolution neural network for fea-
tureless fault diagnosis. In 2016 International Symposium
on Flexible Automation (ISFA), pages 65–70. IEEE, 2016.

N Fathiah Waziralilah, Aminudin Abu, MH Lim, Lee Kee
Quen, and Ahmed Elfakharany. A review on convo-
lutional neural network in bearing fault diagnosis. In
MATEC Web of Conferences, volume 255, page 06002.
EDP Sciences, 2019.

Dunzhu Xia, Limei Cheng, and Yanhong Yao. A robust in-
ner and outer loop control method for trajectory tracking
of a quadrotor. Sensors, 17(9):2147, 2017.

Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei
Zhang. Deep structured energy based models for anomaly
detection, 2016.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	Introduction
	Approach
	Quadcopters
	Quadcopter Dynamics
	Architecture
	Comparison of Learning Tasks

	Hybrid Quadcopter Control
	 Model-based Low-Level Control
	 Learning-based High-Level Control
	Randomized Blended Control
	Training Details
	Data-Driven Quadcopter Controller

	Experiments
	Experimental Design
	Parameter Spaces
	Trajectory Following Results

	Conclusion

