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Abstract
We propose the use of model checkers to solve
problems of diagnosis of systems modelled with
timed automata. We first show how to reduce a
diagnosis query (i.e., the problem of deciding if a
set of diagnosis hypotheses intersects the diagno-
sis) to a model checking problem. We then show
how to define the queries in order to retrieve the
minimal diagnosis. We also show how to use con-
flicts to accelerate the computation. Finally we
discuss a variant when the system is diagnosable.

1 Introduction
We are interested in model-based diagnosis (MBD) of timed
automata [Alur and Dill, 1994]. A timed automaton (TA) is
a modelling framework for dynamic systems with finite dis-
crete state space and time constraints between events. Ex-
isting approaches developed for discrete event systems are
not suitable because of the infinite state space of TA (see the
Related Work section).

In this paper we propose to use model checkers to com-
pute the diagnosis. Model checkers are tools that were de-
veloped to determine whether certain systems satisfy spe-
cific properties. After presenting the background knowledge
(Section 2) the contributions of this work are: In Section 3
we show that deciding whether the diagnosis intersects a
given set of hypotheses can be expressed as a Computational
Tree Logic (CTL) formula over the synchronous product of
three timed automata (one that represents the model, one
the observations, and one the faults). Then we show how to
choose the sets of hypotheses in order to retrieve the min-
imal diagnosis. In Section 4 we show how to use the con-
flicts to improve the search time. In Section 5 we show how
to adapt this algorithm for diagnosable systems. Finally we
compare our work with the existing approaches (Section 6)
and provide some experimental results (Section 7).

2 Background
2.1 Timed Automaton
Discrete event systems (DES) are a modelling framework
for dynamic systems whose behaviour is described through
discrete changes (the events). A timed automaton is an ex-
tension of DES proposed by Alur and Dill [1994] that in-
cludes information about durations between events.

Timed automata rely on the notion of clocks whose val-
ues increase at constant rate over time. Given a finite set

X of clocks, a clock constraint is a finite, possibly empty,
conjunction of atomic constraints of the form x ./ c or
x − y ./ c where x and y are clocks, c is a constant, and
./ is an operator from {<,≤,=,≥, >}. C(X ) is the set of
all constraints that can be defined over the clocks X . Given
a function ν that assigns a value to each clock and a con-
straint φ ∈ C(X ) on these clocks, ν |= φ indicates that the
constraint is satisfied by the assignment ν. The symbol >
represents the empty constraint and is satisfied by any func-
tion ν.

A timed automaton is then a finite state machine where
transitions are labelled by events, and clocks constrain the
current state and the transitions. Formally a timed automa-
ton is a tuple TA = 〈S,Σ,X , T, I, s0〉 where

• S is a finite set of discrete states and s0 is the initial
discrete state;

• Σ is a finite set of events; X is a finite set of clocks;
• T ⊆ S ×C(X )×Σ× 2X × S is a finite set of discrete

transitions; and
• I : S → C(X ) is the invariant function that associates

each discrete state with a constraint.
A state of a timed automaton is a pair q = 〈s, ν〉 where

s ∈ S is a discrete state and ν : X → Q+ ∪ {0} is a
function that assigns a non-negative rational value to each
clock. disc(q) refers to the discrete state s of q and time(q)
refers to the clock assignment ν. A state must always satisfy
its invariant, i.e., time(q) |= I(disc(q)).

The timed automaton defines two types of transitions:
event occurrence and time passing. An event occurrence
leads the system from state q to state q′ if there exists a
discrete transition 〈s,G, e,R, s′〉 ∈ T such that i) s and
s′ are the discrete states of q and q′ (disc(q) = s and
disc(q′) = s′), ii) the guard G of the transition is satis-
fied in q (time(q) |= G), and iii) the time assignment of q′
is the same as that of q except for the resets specified by R:

∀x ∈ X . time(q′)(x) =

{
0 if x ∈ R,

time(q)(x) otherwise.

This is denoted q e−→ q′.
A time passing leads the system from state q to state q′

if i) their discrete states are identical (disc(q) = disc(q′))
and ii) the clock assignments of q′ are postponed by the
same positive amount τ ∈ Q+ compared to q (∀x ∈
X . time(q′)(x) = time(q)(x)+τ ). This is denoted q τ−→ q′.

The initial state is init(TA) = 〈s0, ν0〉 where ν0 is the
function that assigns 0 to each clock. A run ρ is a finite



sequence of transitions q0
`1−→ . . .

`n−→ qn. Runs(TA, q) is
the set of runs of TA that start from state q, and Runs(TA)
the set of runs that start from the initial state. The duration of
a run, |ρ|, is the sum of all `i that are numbers (not events).

Given a run ρ = q0
`1−→ . . .

`n−→ qn, ρ goes through state q
(q ∈ ρ) if

• either q = qi for some i ∈ {0, . . . , n},

• or qi−1
τ−→ q

`i−τ−−−→ qi for some i ∈ {1, . . . , n} and

some τ ∈ Q+, (i.e., the transition qi−1
`i−→ qi passes

through the state q).
A distributed set of timed automata is a set
{TA1, . . . ,TAp} of p timed automata whose sets
of clocks are disjoint (X i ∩ X j = ∅ whenever
i 6= j). It implicitly represents the time automaton
TA = TA1|| . . . ||TAp = 〈S,Σ,X , T, I, s0〉 defined by

• S = S1 × · · · × Sp, s0 = 〈s1
0, . . . , s

p
0〉,

• Σ =
⋃
i∈{1,...,p} Σi, X =

⋃
i∈{1,...,p} X i,

• T is the set of transitions defined below, and
• I(〈s1, . . . , sp〉) =

∧
i∈{1,...,p} I

i(si).

The transitions of T are precisely those transitions
〈〈s1, . . . , sp〉,

∧
i∈{1,...,p} Gi, e,

⋃
i∈{1,...,p} Ri, 〈s′1, . . . , s′p〉〉

such that for every i ∈ {1, . . . , p},
• either e ∈ Σi and then 〈si, Gi, e, Ri, s′i〉 ∈ T i is a

transition;
• or e 6∈ Σi and then si = s′i, Gi = >, and Ri = ∅.

Essentially the timed automaton takes a transition on all
timed automata TAi that mention event e.

2.2 Diagnosis
The system is modelled by the timed automaton TAM (or
a distributed set of timed automata) and is partially ob-
served. In traditional DES fashion, partial observability is
modelled by the partitioning of the events into observable
and unobservable events, Σo and Σu. The trace of a run
ρ = q0

`1−→ . . .
`n−→ qn is the list of transition labels that

compose it ([`1, . . . , `n]) in which consecutive durations are
added up. For instance, a run q0

e1−→ q1
2−→ q2

1.5−−→ q3
e2−→ q4

yields the trace [e1, 3.5, e2]. The observable trace obs(ρ)
of the run is the trace of the run in which the unobservable
events are stripped out and the duration are, again, added up.
For instance, a run q0

e1−→ q1
2−→ q2

e2−→ q3
1.5−−→ q4

e3−→ q5,
in which e1 and e3 are observable and e2 is not, yields the
trace [e1, 2, e2, 1.5, e3] and the observable trace [e1, 3.5, e3].

Diagnosis is concerned with deciding whether the system
is experiencing faults, and if so which ones. This is mod-
elled by assuming that the unobservable events are further
partitioned into faulty and non-faulty events (Σn and Σf ).
The diagnosis hypothesis associated with a run ρ = q0

`1−→
. . .

`n−→ qn is then the set of faults that take place in the run:
hypo(ρ) = Σf ∩ {`i | i ∈ {1, . . . , n}}.

The problem of diagnosis then consists in finding all the
hypotheses that are consistent with the observation made on
the system’s run. The minimal diagnosis restricts this set to
all subset-minimal ones.
Definition 1. A diagnostic problem is a tuple P =
〈TAM,Σo,Σf , σ〉 where TAM is the model, Σo is the set
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Figure 1: Example model.

of observable events, Σf is the set of faulty events, and σ is
the observed sequence.

Given the diagnostic problem P = 〈TAM,Σo,Σf , σ〉, a
diagnosis candidate is an hypothesis δ that is consistent with
the observed sequence: ∃ρ ∈ Runs(TAM). hypo(ρ) =
δ ∧ obs(ρ) = σ. The diagnosis ∆(P) is the set of diagno-
sis candidates. The minimal diagnosis ∆min(P) is the set
of all subset-minimal candidates: { δ ∈ ∆(P) | ∀δ′ ∈
∆(P). δ′ ⊆ δ ⇒ δ′ = δ }.

Consider the example of Fig. 1 [He et al., 2018] with the
observed sequence [1.5, o1, 3.5, o2, 1.5, o1]. One possible
run that matches this sequence is q0

1.5−−→ q1
o1−→ q2

3.5−−→
q3

o2−→ q4
1.2−−→ q5

f−→ q6
0.3−−→ q7

o1−→ q8. There are infinitely
many other consistent runs (with various delays for the tran-
sitions between q4 and q5) but they all include the fault f .
Therefore the diagnosis is ∆ = { {f} }.

2.3 Computation Tree Logic and Model Checking
Model checking is the problem of deciding whether an ar-
tifact satisfies a given specification [Clarke et al., 2000b].
The specification language we use in this paper is Computa-
tional Tree Logic (CTL). This language is sophisticated, but
we limit ourselves to specifications of the form ϕ = EF Q,
where each Q is a set of states, that asks the question “does
the model exhibit a run that ends in a state from Q. In prac-
tice, Q will be replaced with Q1 ∧ · · · ∧Qk where each Qi
is a subset of one of the Sj , with the meaning that the final
state of the run should be in Qi for the right TA.

3 Diagnosis with Model Checkers
In this section we show how MBD of timed automata can
be performed using model checkers. The basic idea con-
sists in building a system that includes three components
(the model, an “observation automaton” that represents the
observed sequence, and a “faulty automaton” that records
the faulty events that occurred on the system) together with
a query in CTL that is satisfied iff there exists a run that
matches the observations and that ends in a specific state of
the faulty automaton. This framework is refined in the next
section for a more sophisticated algorithm.

3.1 Observation Automaton
The observation automaton is defined in such a way that
the runs that the model checker will consider are precisely
those that match the observed sequence. To this end, we
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Figure 2: Observation automaton for the observation sequence
[1, o1, 3, o2, 2, o1].

assume wlog that σ = [τ0, o1, τ1, o2, . . . , τk−1, ok] is such
that the final element of the trace is an observable event and
the initial one is not. |σ| = k (not to be confused with |ρ|)
is the number of observed events.

Definition 2. Let Σo be the set of observable events and σ =
[τ0, o1, . . . , τk−1, ok] be the observed sequence. The obser-
vation automaton is the timed automaton TAO(Σo, σ) =
〈SO,ΣO,XO, TO, IO, sO

0 〉 defined by:

• SO = {0, 1, . . . , k} includes k + 1 states, sO
0 = 0,

• ΣO = Σo includes all observable events,

• XO = {x} includes one fresh clock,

• TO = {ti}i∈{1,...,k} where for each i ∈ {1, . . . , k},
ti = 〈i− 1, (x = τi−1), oi, {x}, i〉, and

• IO(i) =

{
(x ≤ ti) for i < k
> for i = k.

We illustrate Definition 2 with an example on Figure 2. It
should be clear that any run that ends up in state k generates
precisely the observed sequence.

3.2 Faulty Automaton
Similarly, we define an automaton that records the set of
faults that occurred on the system. This automaton does not
use any clock.

Definition 3. Given a set of faults Σf the correspond-
ing faulty automaton is the timed automaton TAF(Σf) =
〈SF,ΣF,XF, TF, IF, sF

0 〉 defined by:

• SF = 2Σf is the powerset of Σf ; sF
0 = ∅;

• ΣF = Σf ; XF = ∅;
• TF = {〈h,>, f, h ∪ {f}〉 | h ⊆ Σf , f ∈ Σf}; and

• IF(h) = > for all h ∈ SF.

We illustrate Definition 3 with an example on Fig-
ure 3. In practice the faulty automaton can be de-
fined as the synchronous product of a collection of faulty
automata, each of which built from a different event:
TAF(f1)|| . . . ||TAF(fm) where Σf = {f1, . . . , fm}.

s0

{f1}

{f2}

{f1, f2}

f1

f1

f2

f2

f2

f1

{f1, f2}

Figure 3: Faulty automaton for the set of faulty events {f1, f2}.

Algorithm 1 Naïve diagnosis algorithm

1: input: diagnostic problem P = 〈TAM,Σo,Σf , σ〉
2: output: minimal diagnosis ∆min(P)
3: O := {∅}; R := {}
4: while O 6= ∅ do
5: h := pop(O)
6: if ∃δ ∈ R. δ ⊆ h then
7: continue
8: if test of {h} is positive then
9: R := R ∪ {h}

10: else
11: for all f ∈ Σf \ h do
12: if @h′ ∈ O. h′ ⊆ h ∪ {f} then
13: O := O ∪ {h ∪ {f}}
14: return R

3.3 Testing a Set of Hypotheses
We now present the basic ingredient that we use to compute
MBD of TAM. This basic ingredient is a consistency test-
ing between the model, the observed sequence, and a set of
hypotheses.

Definition 4. Given the diagnostic problem is a tuple P =
〈TAM,Σo,Σf , σ〉 and given the set of hypotheses H ⊆ 2Σf ,
a (diagnostic) test verifies the validity of the statement

∆(P) ∩H = ∅.

The test is positive if the intersection is non-empty.

We use a model checker to perform the test.

Definition 5. Given the diagnostic problem P =
〈TAM,Σo,Σf , σ〉 and given the set of hypotheses H ⊆ 2Σf ,
the diagnostic CTL query is CTL(H) = EF (|σ| ∧H).

Lemma 1. The diagnosis test for H is positive iff
TAM,TAO(Σo, σ),TAF(Σf) |= CTL(H) holds.

Proof sketch: CTL(H) asks the model checker to search
for a specific run from the model: this run should match the
observed sequence in order to end up in discrete state |σ|;
it should also match one of the hypotheses in H in order to
end up in one of the discrete states H . The test is indeed
positive iff such a run exists. QED

3.4 A Simple Diagnosis Algorithm
Lemma 1 allows us to design a diagnostic algorithm by care-
fully choosing which sets H of hypotheses to test. A naïve
implementation is proposed on Algo. 1. Starting with the
minimal hypothesis (∅) the algorithm maintains a list of hy-
potheses in the open list O. Whenever an hypothesis h from
O is proved to be consistent with the observation sequence
it is added to the result R; by construction, it is guaranteed
that no strict subset of h is also a result. If h does not belong
to R all supersets of h that consists in adding a single fault
to h are added to O, assuming there is no strict subset of
these in O.

4 A Conflict-Based Approach to Diagnosis
Model-based diagnosis has traditionally been solved
through the use of conflicts, a notion developped and ex-
ploited by De Kleer and Williams [1987] and Reiter [1987].
Conflicts were initially proposed for diagnosis of circuit sys-
tems, but their use has been adapted for the diagnosis of



Algorithm 2 Computing a minimal conflict
input: Diagnostic problem P , conflict F ⊆ Σf

output Minimal conflict C such that C ⊆ F
C := F
for all f ∈ F do

if C \ {f} is a conflict then
C := C \ {f}

return C

dynamic systems too [Cordier et al., 2004; Grastien et al.,
2012].

In our context, given a diagnostic problem P a conflict is
a subset C ⊆ Σf of faults such that any diagnosis candidate
contains one of these faults:

∀δ ∈ ∆(P). δ ∩ C 6= ∅.
A conflict is minimal if none of its strict subsets is a conflict.
Given a collection X = {C1, . . . , Ck} of sets a hitting set
is a set S that intersects with all sets of the collection:

∀C ∈ X. S ∩ C 6= ∅;
a hitting set is minimal if none of its strict subsets is also a
hitting set. It is well known that the minimal diagnosis is
the set of minimal hitting sets of the collection of minimal
conflicts.

The minimal diagnosis can be deduced by first comput-
ing all minimal conflicts and then computing their minimal
hitting sets. In a different approach, conflicts are discov-
ered during the diagnosis algorithm rather than as a pre-
processing step, and these conflicts are used to reduce the
search space.

We now show i) how model checkers can be used to de-
termine if a set of faults is a conflict, ii) how to compute
minimal conflicts with model checkers, and iii) how to use
these conflicts in a revised algorithm.

A set F ⊆ Σf of faults is a conflict iff the set H =
{h ⊆ Σf | h ⊆ Σf \ F} of hypotheses does not inter-
sect the diagnosis [Slaney, 2014]. For instance in a scenario
Σf = {f1, f2, f3, f4}, F = {f1, f2}, the set H is defined
as { ∅, {f3}, {f4}, {f3, f4} }. We define a dedicated CTL
formula to represent this.
Definition 6. Given the diagnostic problem P =
〈TAM,Σo,Σf , σ〉, the conflict CTL query associated with
the set F of faults is CTLc(P, F ) = EF (|σ|∧

∧
f∈F ¬{f}).

Lemma 2. The set F of faults is a conflict iff
TAM,TAO(Σo, σ),TAF(Σf) 6|= CTLc(F ) holds.

We can use Lemma 2 to devise an algorithm that com-
putes a minimal conflict by using the fact that the quality of
being a conflict is monotonic, i.e., it satisfies the following
property:

S1 ⊆ S2 ∧ S1 is a conflict ⇒ S2 is a conflict.

Therefore it is possible to remove each fault from F greed-
ily, and to make sure that the set of faults remains incon-
sistent with the diagnostic problem. This is summarised on
Algo. 2.

It is now possible to incorporate the conflicts into the di-
agnostic algorithm itself. Conflicts are useful in two aspects:
first they help identify early that some hypotheses are not
diagnosis candidates because they do not intersect these hy-
potheses; second they reduce the number of new hypotheses
that need to be included into the open list.

Algorithm 3 Diagnostic algorithm using conflicts
1: input: Diagnostic problem P
2: output: minimal diagnosis ∆min(P)
3: O := {∅}; R := {}; Conflicts = {}
4: while O 6= ∅ do
5: h := pop(O)
6: if ∃δ ∈ R. δ ⊆ h then
7: continue
8: C := ⊥ // Will differ from ⊥ if h 6∈ ∆
9: for all C′ ∈ Conflicts do

10: if C′ ∩ h = ∅ then
11: C := C′
12: if C = ⊥ ∧ test of {h} is positive then
13: R := R ∪ {h}
14: else
15: C := compute-min-conflict(P,Σf \ h)
16: Conflicts := Conflicts ∪ {C}
17: if C 6= ⊥ then
18: for all f ∈ C do
19: if @h′ ∈ O. h′ ⊆ h ∪ {f} then
20: O := O ∪ {h ∪ {f}}
21: return R

It can be shown that Algo. 3 terminates and returns the
minimal diagnosis. The proof relies on the following re-
marks: for each minimal diagnosis candidate δ and at the
beginning of every loop, there is always an hypothesis h ∈
R∪O such that h ⊆ δ (this is guaranteed in particular by the
fact thatO is updated with faults from the conflict). Further-
more since O is empty at the end and since R only contains
minimal candidates, all minimal candidates are in R at the
end of the algorithm. Finally we can show that the set O
never stays the same from one iteration to the next, which
proves the termination of the algorithm.

As an example to show the benefits of Algo. 3 over
Algo. 1, consider a situation where the set of faulty events
contains ten elements (Σf = {f1, . . . , f10}) and the only
minimal candidate contains only fault f1: ∆min = { {f1} }.
In this scenario Algo. 1 will test set {f1} as well as all sub-
sets of Σf \ {f1}, i.e., a total of 513 tests. In comparison,
Algo. 2 will first test hypothesis ∅, will then test what hap-
pens when each fault is removed (ten more tests), and will
finally test hypothesis {f1}, for a total of only twelve tests.

5 Diagnosable Models
We now briefly discuss our method in a diagnosable context,
and how this context allows for a more efficient procedure.

Diagnosability is the property that whenever a fault oc-
curs it leads to the production of an observed sequence that
betrays the fault unmistakably. Diagnosability is generally
desirable from a design perspective because it means that
faults can be detected and precisely identified, which allows
the observer to take appropriate action.

Formally a τ -diagnoser D (where τ ∈ Q+ is called the
delay) is a function that reads an observed trace and returns
a single hypothesis such that

1. for all run ρ ∈ Runs(TAM), D(obs(ρ)) ⊆ hypo(ρ),
i.e., the diagnoser does not pretend to identify faults
that did not happen;

2. for all run ρρ′ ∈ Runs(TAM) such that |ρ′| ≥ τ ,
D(obs(ρρ′)) ⊇ hypo(ρ), i.e., the diagnoser should
identify faults that occurred at least τ ago.
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Figure 4: Faulty automaton for the set of faulty events {f1, f2}.

τ -diagnosability is the property that a τ -diagnoser exists.
Such a diagnoser may not exist because different runs with
different hypotheses may yield the same observable trace. A
τ -diagnoserD(σ) does not always match the real diagnostic
hypothesis hypo(ρ) or even the best diagnosis (i.e., the fol-
lowing may hold: D(σ) 6∈ ∆(σ)), but this imprecision is ac-
cepted because it only involves faults that recently occurred
(less than τ ago), and it is assumed that the negative reper-
cussion of delaying their identification is therefore limited.
In this section we therefore focus on the problem of building
of τ -diagnoser, assuming the model is τ -diagnosable.

Notice that a τ -diagnoser for a set Σf = {f1, . . . , fm} of
faulty events can be split into m independent τ -diagnosers
for each fault fi. This is beneficial because i) it reduces the
number of hypotheses that need to be considered from 2m to
2×m, and ii) each diagnoser can be tailored for its specific
fault [Pencolé, 2004]. Importantly this means that we can
assume that there is only one fault f .

The main contribution is this section is to show that it
is possible to define two different CTL queries in order to
build a τ -diagnoser. One can choose either query or both;
in the latter case both queries can be answered in parallel
so that as soon as one of them is solved, the other one can
be terminated. We have the guarantee from the diagnosabil-
ity property that at least one of them will be negative, and
we consequently call this approach “diagnosis by contradic-
tion.”

The first query is similar to the one proposed earlier
and can be simply written ϕ1 = EF (k ∧ ¬{f}). Then
D1(σ) = ∅ iff ϕ1 is positive is a τ -diagnoser.

The second query asks whether it is possible to find a run
that matches the observed sequence and that does not exhibit
a fault up to τ before the end of the observed sequence. To
this end we redefine the faulty timed automaton TAF as il-
lustrated on Fig. 4. Essentially this automaton records the
event f only if the clock y is below |σ| − τ . This time the
second query is ϕ2 = EF (k ∧ {f}). Then D2(σ) = {f}
iff ϕ2 is positive (with the new faulty automaton) is a τ -
diagnoser.

6 Related Works
The use of model checking for MBD was first proposed by
Cordier and Largouët [2001]. They encode the observed
sequence directly in the CTL queryEF (o1∧EF (o2∧. . . )),
which makes it more cumbersome to use than our method.

Diagnosis of discrete event system is often performed by
computing explicitly a machine that reads a flow of observed
events and updates the current belief state, i.e., the set of
states that the system could be in [Sampath et al., 1995].
This method however is not very efficient (the machine is
exponential in the number of system states) and cannot be
applied for timed automata where the set of states is infinite
[Tripakis, 2003].

Another approach consists in computing all runs that
match the observed sequence, representing these runs com-

Figure 5: Performance comparison between Algo. 1 and Algo. 3.

pactly (e.g., with an automaton), and finally reasoning
about this structure directly [Lamperti and Zanella, 2003;
Pencolé and Cordier, 2005; Benveniste et al., 2005; Su and
Wonham, 2005; Kan John and Grastien, 2008]. Again this
method is not quite applicable here because, e.g., in the
timed automaton obtained by synchronous product of the
model, the observation automaton, and the fault automaton,
it is not obvious which discrete states are reachable from the
start state. An additional procedure is required, which in our
case is the purpose of the model checker.

Tripakis [2002] proposed to track the belief state with
the use of data structures such as difference bound matrices
(DBM) [Alur et al., 1993]. While this approach is indeed
a possible solution and is often used in model checkers, we
moved away from it for the following three reasons. First it
does not give the solver any flexibility as to how the prob-
lem should be solved. As we mentioned before, some of
the queries are negative and this can be proved from a small
subset of timed automata. In other situations, late observa-
tions can help discriminate early uncertainties [Pencolé and
Cordier, 2005]. Model checkers can be clever in how they
handle queries, e.g., with the use of counter-example guided
abstraction refinement [Clarke et al., 2000a]. Tracking the
belief state goes against this type of approach. Second the
approach by Tripakis is applicable as long as the observed
sequence is certain. We did not expand further on this as-
pect, but it should be clear that the observation automaton
could be modified to allow uncertainty on the observed se-
quence. This cannot be trivially done in the approach from
Tripakis. Finally the flexibility of the observation automa-
ton allows us to abstract this automaton, which can be used
to identify which specific observed events are instrumental
to finding the diagnosis [Christopher and Grastien, 2015].

7 Experiments
We use the experiment to compare the diagnosis efficiency
between Algorithm 1 and the conflict-based approach of Al-
gorithm 3. Our algorithms are implemented in Java. We
used the model checker UPPAAL (www.uppaal.org/).

To this end we built a set of benchmarks that consists
of n + 2 synchronised timed automata with n clocks for
n ∈ {1, . . . , 10}. These benchmarks model messages being
carried from one component to the next in a timely manner;
faults affect the duration of the transmission, with different
delay for each component, which allows to narrow down the
list of suspects.

www.uppaal.org/


In order to evaluate these two diagnosis algorithms, we
built scenarios for the various systems. The results are sum-
marised in Figure 5. We see that as soon as the number of
faults becomes non-trivial (4 and more) the conflict-based
approach becomes significantly more efficient (notice that
the y-axis is logscale). Importantly our scenarios include
several minimal diagnosis candidates of cardinality (num-
ber of faults) higher than one: these problems are not as
trivial as the example we provided to illustrate the benefits
of Algo. 3.

8 Conclusion
In this paper we show how to use model checkers in order
to perform diagnosis of timed automata. We reduce decid-
ing whether a set of hypotheses intersects the diagnosis to a
reachability property in CTL, and show how to choose these
sets of hypotheses so that the diagnosis can be deduced. We
also show how to use conflicts to accelerate the process.

There are many issues that we ignored because of space
restrictions but that are relevant. It should be easy to han-
dle uncertainty on the observations [Jiang and Kumar, 2006;
Lamperti and Zanella, 2003]. We also want to address the
incremental aspect of diagnosis: as new observations are
available, the diagnosis needs to be updated. There has been
work on this issue [Su et al., 2014; Bouziat et al., 2019], and
adapting these techniques to our approach is not obvious.
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