
Diagnosing Cyber-Physical Systems with CatIO

Edi Muškardin and Ingo Pill and Franz Wotawa
Christian Doppler Laboratory for Quality Assurance Methodologies for Cyber-Physical Systems

Institute for Software Technology, Graz University of Technology
Inffeldgasse 16b/II, 8010 Graz, Austria

e-mail: {edi.muskardin, ipill, wotawa}@ist.tugraz.at

Abstract
Diagnosing cyber-physical systems is intrinsi-
cally challenging due to the complex interaction
between physical and cyber components. In this
manuscript, we will demonstrate the capabilities
of our CatIO framework supporting a designer in
diagnosing such systems and assessing the quality
of the process. Via a specialized interface, the di-
agnosis engines can be fed with observations from
Modelica simulations, where Modelica is a per-
fect means for modeling CPSs. Via these simu-
lations we can assess the diagnostic reasoning’s
quality even early on during development, and we
can automatically create a diagnostic model when
simulating injected faults and their effects. CatIO
also allows designers to interact with a simulation
at run-time, such as to asses repair and compen-
sating actions derived by a CPS’s control logic.

1 Introduction
Intelligent cyber-physical systems (CPSs) are nowadays
deeply integrated in our everydays life. With future devel-
opments of artificial intelligence and the Internet of Things,
our reliance on their ability to autonomously discharge their
duties is likely to continue to grow even further. The in-
terconnections between a cyber system and its environment
makes a CPS quite complex though and introduce several
challenges in areas like testing, verification and validation,
and model-based diagnosis [13]. That is, those systems have
to be aware of their current state, that of the environment,
and they have to know how to deal with occurring problems.

Due to their features, intelligent CPSs can be found in
many application domains, including aerospace engineer-
ing, automotive industry, healthcare, manufacturing and
many more. Depending on the application, human control
over a CPS is often limited to the roles of observer and task
definition. Once their tasks have been defined, we often
expect those systems to be fully autonomous, safe, secure
and fault-tolerant/fail-operational, i.e., dependable. That is,
if the compensating or repair actions for mitigating experi-
enced issues can be performed autonomously, we can save
time, resources and money. Obviously, this requires us to
heavily test a CPS and its control logic, such as to estab-
lish the required trust. We also need a diagnostic reasoning
engine that can provide the CPS with the diagnostic data
needed to make smart decisions for mitigating the undesired
effects.

Our CatIO1 framework was designed for exactly that
purpose. The architecture as outlined in [8] connects
consistency-oriented model-based diagnosis and abductive
diagnosis with Modelica [6] models, such as to support di-
agnosing a CPS using Modelica simulations during a CPS’s
development—of course one can use also “real” observa-
tions from the final CPS. We also support the automated
generation of abductive diagnosis models via simulation and
fault injection [4], and there is also a dedicated interface to
connect a CPS’s control logic to a simulation. Via the lat-
ter, the control logic can draw on the simulation and diagno-
sis results for deriving the desired compensating actions and
then implement them by feeding them into the simulation.

2 Preliminaries
The ratio behind model-based reasoning is to reason about
a system’s behavior using a system’s model. Model-based
diagnosis (MBD) [11; 3] as such a technique allows us to
reason about faults present in the system by considering a
specific model and observations about its actual behavior.
This dedicated model comprises a set of components and
also interconnections between them. Each component can
be seen as a subsystem of the system as a whole, with its in-
and outputs connected to other components or being a sys-
tem’s primary in- and outputs. Each component c features a
health state hc ∈ H—a proposition that states whether the
component is OK and thus behaves as expected (hc = >
means c is OK). Consequently, health states can be seen as
assumptions about the correctness of the components/sys-
tem and, if the system does not behave as expected, they are
used to isolate (a) root cause(s).

When using the classic weak fault model, we describe
only the components’ correct behavior. That is, if a com-
ponent is faulty (hc = ⊥), there is no assumption on this
component’s behavior. Consequently we do not require any
knowledge about possible faults and their consequences.
Whenever we include also such knowledge, we implement
strong fault models [4].

Once a diagnostic model has been derived, we can use it
to tackle the diagnosis problem of finding explanations for
unexpected/faulty behavior. In particular, once we find that
a system’s actual behavior contradicts the expected behav-
ior described in the diagnosis model—when assuming that
all components are OK. Intuitively, a contradiction entails

1From “Causarum Cognitio” which is Latin for “(seek) knowl-
edge of causes”

that some component(s) must behave abnormally (or that
the model is incorrect).

Definition 1. A diagnosis problem can be described as a
tuple (SD,H,OBS), where the tuple (SD,H) describes
the system to be diagnosed andOBS is a set of observations
concerning its behavior.

A solution ∆ to a diagnosis problem is a set of compo-
nents ci which, when assumed that these ci behave abnor-
mally (s.t. hci ∈ ∆), explains the conflicts between ex-
pected and observed behavior [3; 11].

Definition 2. ∆ ⊆ H is a diagnosis for a diagnosis problem
(SD, H,OBS) if and only if SD ∪ OBS ∪ {hi|hi ∈ H \∆}
is consistent (satisfiable) and there exists no ∆′ ⊂ ∆ that is
also a diagnosis.

In consistency-based MBD, we require the observations
to be consistent with our expectations as stated in Def. 2
In this context, we have that a set of logical statements is
consistent iff all statements can be true at the same time.
Therefore we usually describe components, their intercon-
nections and behavior in some logic format. If the system
behaves as expected, the union of all logical sentences in SD
and OBS will be consistent with the assumption ∆ = ∅. An
inconsistency entails that some sentences in the model can-
not be evaluated as truths. A conflict is then a set of logical
sentences that are inconsistent, where for MBD we focus on
conflicts in the assumptions that components ci are OK.

Definition 3. A conflict C for a diagnosis problem
(SD, H,OBS) is a subset ofH such that SD∪OBS∪{hi|hi ∈
C} is inconsistent. If no proper subset C ′ of C is a conflict,
then C is a subset-minimal conflict.

We can compute diagnoses for some diagnosis problem
as the minimal hitting sets of the set of conflicts, where it
suffices to focus on the subset-minimal conflicts [11; 3]

Definition 4. A hitting set ∆ for a set CS of conflicts as of
Def. 3 is a subset ofH such that ∆∩Ci 6= ∅ for allCi ∈ CS.
∆ is a minimal hitting set if and only if no proper subset of
∆ is a hitting set as well.

Taking conflicts between the observed behavior and the
expected one (as described in the system description) into
account, we can easily derive the diagnoses using algo-
rithms like RC-Tree [9]. Many algorithms, including RC-
Tree, can compute the conflicts on-the-fly by calling a the-
orem prover (like a SAT solver) to check the consistency of
the observations with the system model for some diagnosis
hypothesis (some ∆ ⊆ H) as described above, and ask the
solver for a conflict set (a minimal unsatisfiable core in H)
if this is not the case.

CatIO supports abductive diagnosis problems in the
form of Propositional Horn Clause Abduction Problems
(PHCAPs). Each PHCAP formulates our knowledge about
a system in a knowledge base (KB). For a PHCAP, we
express this knowledge base as a set of Horn clauses over
propositional variables PROPS, where a Horn clause is a
disjunction of literals such that at most one literal is posi-
tive. Propositional variables abstractly denote some value in
the system or a particular mode of a component. In context
of this paper, a hypothesis corresponds directly to causes (of
experienced issues) and we thus use the terms interchange-
ably. Formally, we can define a knowledge base and a PH-
CAP as follows [5]:

Definition 5. A knowledge base (KB) is a tuple (A, Hyp, Th)
where A ⊆ PROPS denotes a set of propositional variables,
Hyp ⊆ A a set of hypotheses and Th a set of horn clause
sentences over A.

Definition 6. Given a knowledge base (A,Hyp,Th) and a set
of observations Obs ⊆ A, the tuple (A, Hyp, Th, Obs) forms
a propositional horn clause abduction problem (PHCAP).

A solution to a PHCAP is a set of hypotheses that allows
deriving the given observations [5]:

Definition 7. Given a PHCAP (A, Hyp, Th, Obs), a set ∆
⊆ Hyp is a solution if and only if ∆ ∪ Th |= Obs and ∆
∪ Th 6|= ⊥. A solution ∆ is parsimonious, in other words
minimal, if and only if no set ∆′ ⊂ ∆ is a solution.

A solution ∆ to a PHCAP explains the given observations
Obs such that we refer to it also as abductive diagnosis.

While diagnosis models are used to reason about a sys-
tem’s correctness (usually at some abstract level), simula-
tion models describe a system in great detail. For the latter
a designer would use detailed equations that describe the in-
trinsics of system’s components and their interaction. Digi-
tal circuits can certainly be expressed using Boolean logic if
we are interested in their functionality, but she will use dif-
ferential equations if we’re interested in the exact voltages.
The latter is certainly true for the physical components of a
CPS and its environment, where we aim to precisely inves-
tigate their continuous behavior over time.

Definition 8. A simulation model M =
(COMP,MODES, µ, I, O,P) is a tuple that comprises
a finite set of components COMP, a finite set of modes
MODES that contains at least the correct mode ok as
element, a function µ : COMP 7→ MODES mapping
components to their featured modes, a set I of variables
considered as inputs, a set O of variables considered as
outputs, and a Modelica model P that allows us to set an
individual mode m ∈ µ(c) for each c ∈ COMP.

When we inject one or more faults into a system [14], we
have to describe a fault model for the corresponding com-
ponent(s), in order to simulate the consequences. Fault in-
jection can thus be formulated as a (fault) mode assignment,
and a simulation can be seen as a function that computes
all of P ’s variables’ values over time—with respect to the
system inputs, mode assignment and simulation run time.

Definition 9. Let TIME be a finite set of points in time.
A mode assignment ∆ is a set of functions δi : COMP ×
TIME 7→ MODES that assign to each component c ∈
COMP for each time point t ∈ TIME a mode m ∈ µ(c),
i.e., ∆ = {δ1, . . . , δ|TIME|} where ∀i ∈ {1, . . . , |TIME|} :
∀t ∈ TIME : ∀c ∈ COMP : δi(c, t) ∈ µ(c).

3 About CatIO
CatIO2 was developed out of the need for a unified frame-
work that eases the development of diagnostic models and
allows a smooth interconnection of a diagnostic process
and simulation scenarios. The development of a diagnostic
model is a cumbersome task in itself, and lacking a unified
way of testing said model against a simulation of a fault in-
jected into the system, MBD remains underrepresented in
the industry tool base. With CatIO, we offer such a solution

2https://github.com/EdiMuskardin/
CatIO-MBD-Framework

https://github.com/EdiMuskardin/CatIO-MBD-Framework
https://github.com/EdiMuskardin/CatIO-MBD-Framework

and aim to demonstrate how a designer can conveniently de-
velop a diagnosis system and test/assess its capabilities.

CatIO supports two modeling paradigms for developing
diagnostic models. For developing consistency-based MBD
models, we support descriptions in propositional logic,
whereas for abductive models we support using a set of
Horn clauses (as supported in PHCAPs) in a PROLOG-like
syntax. All diagnostic models can, of course, be manually
tested by entering observations. By obtaining the observa-
tions from some Modelica simulation scenarios investigated
with CatIO, a designer can quantitatively assess the diagnos-
tic capabilities of a model early on during its development.

The diagnostic features of CatIO are extended by en-
abling the consideration of compensating actions against in
a simulation at run-time. The simultaneous development
of the model and the compensating actions featured by an
autonomous CPS certainly fosters a faster development of
both. The execution of compensating and repair actions de-
pends on the information obtained from diagnostic reason-
ing. Considering this information can foster development
of the diagnostic model which is able to provide sufficient
information about the faults.

Exploiting a fault injection and simulation concept as out-
lined in [14], allows users of CatIO to automatically gener-
ate abductive models. Such automatically generated models
can be investigated in Modelica simulations of the CPS in
order to assess their diagnostic capabilities. The supported
manual extension by physical impossibilities or additional
behaviors of these models can lead to improved diagnostic
capabilities.

3.1 Using the CatIO framework
To use CatIO capabilities to their intended and full extend,
we assume that designer has a Functional Mock-Up Inter-
face (FMI)[2] defining the model. Model can be accompa-
nied by test-bench which defines all inputs over time or it
can be “input-oriented”, so that all inputs to the model are
defined with CatIO. CatIO distinguish between two different
Modelica model/simulation paradigms. First, a Modelica
model of a system is developed together with a correspond-
ing test bench, which assigns values to the simulation model
over time. Second, an “input-oriented” model is a Modelica
model where all changeable variables are set as inputs using
external tools like CatIO. Such variables are system inputs,
system parameters and mode assignment variables. Both
paradigms are fully compatible with CatIO, where the latter
is preferred as it enables a manual or programmatic creation
of simulation scenarios via assigning inputs, parameters or
modes over time. Using the latter variant, FMI can be used
as a digital twin of a cyber-physical system.

In order to use CatIO for diagnosis, raw data of the sim-
ulation has to be mapped to the propositions found in the
model, and more precisely to observations. Note that simu-
lation data can be of any type and value, whereas diagnos-
tic models consist of a finite set of propositions, which are
encoded as strings. Propositions can be represented quali-
tatively, e.g., as deviation model or a value abstraction. To
map raw simulation data to proposition, a designer has to
implement a Encoder interface in CatIO. Propositions ob-
tained from the Encoder are observations of the system.

With the diagnostic model and a corresponding
Encoder a designer may couple diagnostic capabili-
ties with Modelica simulation directly. In case of observed
faults and corresponding diagnosis, designer may further be

interested in exploring available consequences of compen-
sating and repair actions. For this purpose, a Controller
interface enables run-time interaction with the simulation.
It defines a set of actions performed on the simulation
over time. Length of compensating and repair action is
user defined and may change over time depending on the
systems response.

Besides diagnosis and repair functionality CatIO offers
easy model construction using the Diff interface with
a corresponding diff method. This method is used in
CatIO to compare a fault free and a fault injected sim-
ulation. Once a discrepancies between simulations are
detected, they are mapped to propositions that are used
to automatically construct an abductive model in form of
faulty1(comp)...faultyn(comp) → discrepancy. Com-
bination exploration of possible simulation inputs, param-
eters and fault state is used to define simulation scenarios
which are used to generate abductive model. Depending on
designer’s preferences, he or she can compare propositions
obtained from encoder or raw simulation values in diff.
The former can be used to generate deviation models, while
latter enables the generation of qualitative models where ab-
stract value representations are used.

4 Running Example
To illustrate how CatIO can be used, we make use of a
robot’s differential drive (cf. Fig. 1). Such a drive is charac-
terized by having two individually controllable wheels. In-
tuitively, if both wheels spin with the same speed, the robot
will move in a straight line. If one wheel spins faster than
the other, it will turn into the direction of the slower spin-
ning one instead.

Figure 1: Schematic of differential drive robot

Let us now describe the kinematics in more detail. To this
end, let us introduce a coordinate system (XR, YR), where
the robot’s heading is described via the angle θ to the X-axis.
The parameter d defines the distance between the wheels,
and the desired wheel spin is controlled via “input” volt-
ages VR and VL respectively. A robot’s rotation from the
Instantaneous Center of Curvature (ICC) at radius R (to the
robot’s center) is described via the rotational speed ω.

If the drive works as expected, the two wheels spin with
the speeds defined by the input voltages VR and VL. The
model contains also “output” voltages capturing the actual
spinning speeds, so that for a correctly working drive, the
respective voltages will be identical. If, however, a wheel
spins faster or slower than expected (due to some problem),
the voltages will differ and we will be able to observe a com-
promised heading (cf. Fig. 2).

5 Demonstrating CatIO’s Capabilities
5.1 Data Selection and Scenario Generation
Using CatIO, a designer can run simulations via an FMI. As
outlined in Sec. 3.1, we need to map the signals and their
values in a simulation to the format suitable for the diagnos-
tic model. CatIO’s graphical user interface (GUI) supports
the designer in performing this step. There a designer can
select a set of those variables found in the FMI that should
be read for every simulation and fed into the Encoder de-
scribed in Sec. 3.1. These “Read” will then define the input-
s/probing points/sensory data as observations for diagnosis
of the CPS. For our running example, we observe the input
and output voltages coming from FMI of the mobile robot.

In terms of input scenarios for simulation a designer can
either define them manually or use an automated genera-
tion procedure. The CatIO GUI allows a designer to auto-
matically generate simulation scenarios using a combinato-
rial exploration of all system inputs, parameters and health
state options like used in combinatorial testing [7] (using
the ACTS[15] tool library). The designer selects those vari-
ables/signals that shall be assigned automatically and then
he or she has to define a finite set of representative values
for each of those variable. Constraints over variables values,
n-wise testing and minimal number of correct components
can be defined to further reduce the size of automatically
generated scenario suite.

For a manual specification of a scenario, a designer can
populate a dynamically generated table (depending on the
length of the simulation and number of inputs) analogue to
Table 1 via the GUI. All input values of a simulation have to
be initialized and whenever a value change is desired from
some time step t, the new value is entered for t (and stays
unchanged until another change occurs).

Table 1: Manual specification of simulation scenario.
Step d mode(Lw) mode(Rw) input(Lw) input(Rw)

0 2 ok ok 3 3

5 faster

15 ok

Table 1 depicts a simulation scenario where we injected
a fault at time step 5 of the simulation as well as correc-
tion step at time step 15. Input values for both wheels
(input(Rw), input(Lw)) and distance between wheels (d)
remain unchanged through simulation.

5.2 Modeling with CatIO
For developing the simplest model of the differential drive
robot shown in Section 4, we make use of the following
underlying thoughts. If the differential drive robot is behav-
ing abnormally, its diagnostic model has to be inconsistent
with observations. Observation abstraction and modeling is
the starting point of the development of a diagnosis model.
Based just on two input voltages that are the inputs of the our
robot drive system, we can model observations and models
with different levels of abstraction.

In CatIO the following grammar is used for developing a
consistency based model where models are expressed using
propositional logic.

Listing 1: Grammar for consistency based models
H e a l t h S t a t e : : = [A−Z] [A−Za−z0−9_]∗
V a r i a b l e : : = [a−z0−9_@] [A−Za−z0−9_]∗
True : : = ’ $ t r u e ’
F a l s e : : = ’ $ f a l s e ’
N e g a t i o n : : = ’ ! ’
O p e r a t o r : : = ’&’ | ’ | ’ | ’−>’ | ’<−>’
L i t e r a l : : = V a r i a b l e | H e a l t h S t a t e | True | F a l s e | N e g a t i o n

L i t e r a l
Formula : : = L i t e r a l | ’ (’ Formula ’) ’ | Formula O p e r a t o r

Formula
C l au se : : = L i t e r a l (’ , ’ L i t e r a l)∗ ’ . ’
Cons i s t encyMode l : : = (Formula ’ . ’) + | (C l au se ’ . ’) +

As stated in Section 4, the normal behavior of
the wheel is characterized by equal input and output
value. We encode such behavior using the propositions
equalInputOutput_Left and equalInputOutput_Right
for left and right wheel, respectively. If the wheel is behav-
ing abnormally the propositions are negated. Because these
propositions are directly related to the “weak” fault-mode of
the wheel, the diagnostic model can be expressed as given in
Listing 2. Capitalized propositions are the result of the di-
agnostic procedure because they represent health state vari-
ables. If at any point an observation stating a proposition
describing the relation between the wheel input and output
evaluates to false, then the corresponding wheel associated
with that proposition is a single diagnosis.

Listing 2: Weak fault model
! AbLeftWheel −> e q u a l I n p u t O u t p u t _ L e f t .
! AbRightWheel −> e q u a l I n p u t O u t p u t _ R i g h t .

Note that different modeling of observations results in
a diagnostic model with different diagnostic capabilities.
When comparing inputs and outputs of both wheels, we can
determine the wanted and actual direction of the differential
drive robot. If the wanted and actual direction are not equal,
a fault has occurred and diagnostic model shown in Listing
3 is used to compute diagnoses.

Listing 3: Strong fault model
w a n t e d S t r a i g h t & a c t u a l L e f t −> S l o w e r L e f t | F a s t e r R i g h t .
w a n t e d S t r a i g h t & a c t u a l R i g h t −> F a s t e r L e f t | S l o w e r R i g h t .
w a n t e d L e f t & a c t u a l S t r a i g h t −> F a s t e r L e f t | S l o w e r R i g h t .
w a n t e d L e f t & a c t u a l R i g h t −> F a s t e r L e f t | S l o w e r R i g h t .
wan tedRigh t & a c t u a l L e f t −> S l o w e r L e f t | F a s t e r R i g h t .
wan tedRigh t & a c t u a l S t r a i g h t −> F a s t e r L e f t | S l o w e r R i g h t .

/ / p h y s i c a l i m p o s i b i l i t i e s
w a n t e d S t r a i g h t & w a n t e d L e f t −> $ f a l s e .
w a n t e d S t r a i g h t & wan tedRigh t −> $ f a l s e .
wan tedRigh t & w a n t e d L e f t −> $ f a l s e .
a c t u a l S t r a i g h t & a c t u a l L e f t −> $ f a l s e .
a c t u a l S t r a i g h t & a c t u a l R i g h t −> $ f a l s e .
a c t u a l R i g h t & a c t u a l L e f t −> $ f a l s e .

5.3 Diagnosing with CatIO
As already noted CatIO obtains observations during simu-
lation for diagnosis. As stated in Section 3.1, CatIO takes
the raw simulation data and map them to the correspond-
ing propositions. For this purpose the values obtained from
simulation are passed after each time step to the Encoder,
which itself performs the mapping.

Consistency-based model makes use of propositional
logic, which is transformed to an equivalent conjunctive
normal form (CNF) in CatIO. This CNF model is itself
mapped to its corresponding representation in DIMACS
standard format where each propositional variable of the
CNF model is mapped to an integer. Model encoded
in DIMCAS standard is used afterwards in combination
with PicoMUS, a minimal unsatisfiable core extractor based
on PicoSAT[1] SAT solver for computing conflicts. In

Figure 2: Comparison of robot’s movements.

CatIO the consistency-based diagnosis procedure can be
performed making use of three separate configurations.

First, the diagnosis procedure can be performed after each
time step of simulation. Observations obtained for each step
are added to the CNF. If they are unsatisfiable together with
the model, consistency-based diagnosis is computed with
RC-Tree algorithm. Note that abductive diagnosis can only
be performed in this configuration.

Second mode of diagnosis assumes that faults in the sim-
ulation are persistent. Persistent diagnosis returns all pos-
sible diagnosis with the assumption that the occurrence and
duration of each fault is irrelevant and faults persist over
time. The persistent fault-mode diagnosis procedure is in-
voked at the end of the simulation. After each time step
the diagnostic model is expanded by adding all clauses that
are indexed with timing information to make them unique
except health state assumptions. Diagnosis after simulation
returns all faulty components that explain all discrepancies
in such expanded model.

Finally, consistency-based diagnosis can be performed
with the assumption that the faults are intermittent. Intermit-
tent faults do not necessarily persist over time as the health
state of the component may revert to the correct one. Inter-
mittent consistency-based diagnosis considers the duration
and moment of occurrence of each fault. Intermittent di-
agnosis is more precise than persistent-faults diagnosis and
diagnosis performed after every time step of the simulation
as it returns the traces explaining all discrepancies. Trace
is a list of fault modes with corresponding time step. The
intermittent fault model is constructed by incrementing and
adding all integers representing propositions and observa-
tions after each time step of simulation. Run-time of inter-
mittent diagnosis procedure increases exponentially as the
number of possible faults is multiplied with the number of
steps of the simulation.

5.4 Repair and Compensation
Diagnosis capabilities of CatIO can be extended by per-
forming compensating or repair actions once diagnoses
have been computed. For repair CatIO makes use of a
Controller that receives a set of possible diagnosis, and
which performs repair or compensating actions during sim-
ulation. In case of a single diagnosis CatIO used a mapping

of diagnoses to repair actions, whereas otherwise a designer
has to add some selection method for obtaining a single
working hypothesis. A working hypothesis is a diagnosis
which is assumed to be the real cause of the fault. Actions
are performed by sending respective input values to the sim-
ulation over a user-defined number of steps for doing repair
or compensation.

To illustrate repair and compensation, we make use of the
following simulation scenario, which is given in Table 1.
The initial position of the differential drive robot is located
at the (0, 0) point of the coordinate system. In a fault free
scenario robot has to move straight on the x axis. In the
simulation scenario shown in Table 1 we inject a fault at
time step 5. Up to this point, the robot has moved 15th feet
along the x axis from the initial point. For the next 10 steps
the fault is manifested by tilting the robot’s heading angle to
the left. At time step 15 of the simulation fault is corrected
and robot is moving once again in a straight line but with
compromised direction. Fault injected simulation without
any repair or compensating actions is denoted by orange line
in Figure 5.2.

When using the diagnostic model shown in Listing 2, we
are able to compute AbRightWheel as diagnosis after time
step 5. Complete correction of heading angle is still not
possible as it does not provide enough information about
the fault. Therefore we only know that fault is in the right
wheel, and we can consequently perform a repair action.
The repair action is a single step action that restores the be-
havior of the component back to correct state. The grey line
in Figure 5.2 depicts the movement of the robot when using
the repair action. Note that in systems whose behavior or
goal is not time-dependent repair actions would suffice.

In contrast to repair actions, a compensating action can
completely restore the heading angle that is given in the blue
line in the Figure 5.2. Such a compensating action requires
an exact fault mode of the faulty component. The union of
the models shown in Section 5.2 enables such a computation
of a single diagnosis. For the scenario shown in Table 1
the diagnosis is RightWheelFaster. The compensating
action of restoring the heading angle is performed in 4 time
steps (first by making the heading angle parallel with the
x axis and then performing steps which are inverse of the
fault). Hence, compensating actions are usually requiring

a sequence of actions over time. In CatIO both repair and
compensating actions have to be specified as programs that
correspond to diagnosis candidates.

5.5 Further capabilities of CatIO
In this manuscript, we focused on consistency-based diag-
nosis with CatIO. However, abductive diagnosis based on
ATMS[12] is also fully supported by CatIO. For more de-
tails about abductive diagnosis and the automatic generation
of abductive model we refer interested readers to [10].The
automatic generation of abductive models is fully supported
by CatIO. The dynamic generation of simulation scenarios
outlined in Section 5.1 alongside with the dedicated Diff
interface, enables the designer to automatically generate
rules of the form FaultMode(C1), ... FaultMode(Cn)→ ef-
fect. In CatIO automatically generated models can be manu-
ally expanded by adding additional rules or by stating phys-
ical impossibilities.

CatIO offers also a graphical plotting of simulation val-
ues. Plotting can be performed on variable pairs or on a
single variable that is plotted over time. The content of the
CatIO graphical user interface that aids the designer is out-
lined in [8].

6 Conclusion and Future Work
CatIO supports designers in implementing model-based di-
agnosis for cyber-physical system. The CatIO framework
allows the designer to develop consistency-based and ab-
ductive diagnosis models. It allows further the comparison
and evaluation of the developed models via performing ex-
periments utilizing simulation models. Powerful simulation
capabilities of Modelica coupled with principles of model-
based diagnosis allow designers to reason about the proper
level of abstraction needed for diagnosis models, design and
development of repair actions as well as automatic genera-
tion of abductive models.

CatIO executes simulations via interaction with an FMI
that can be created from Modelica models. FMI is an
open standard and other modeling languages like MATLAB
Simulink and Dymola can also export their models to an
FMI. Therefore, CatIO is not limited to the Modelica model-
ing language. Integrating concepts discussed in [8] and also
shown in this paper provide designers of cyber-physical sys-
tems with a single and integrated development environment
in which both simulation models and diagnostic models can
be created. Further improvements like the automated gen-
eration of repair and compensating actions from models or
the coupling of CatIO with 3D simulation would further in-
crease the usefulness of CatIO for practical applications.

In future work, we consider expanding the modeling lan-
guages used for diagnosis as well as adding more system
description formats like constraint representation with ac-
companying solver. Exploring today’s computational power
and distributed computing by interfacing CatIO to be able
to run multiple simulations in parallel would provide great
run-time improvement for automatic generation of the ab-
ductive model’s knowledge base as well. Therefore, we also
plan extending CatIO to handle such concurrent simulation
and computations.

Acknowledgment
The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for

Research, Technology and Development and the Christian
Doppler Research Association is gratefully acknowledged.

References
[1] A. Biere. Picosat essentials. Journal on Satisfiabil-

ity, Boolean Modeling and Computation (JSAT, page
2008.

[2] T. Blochwitz, M. Otter, J. ÃĚkesson, M. Arnold,
C. ClauÃ§, H. Elmqvist, M. Friedrich, A. Junghanns,
J. Mauss, D. Neumerkel, H. Olsson, and A. Viel. Func-
tional mockup interface 2.0: The standard for tool in-
dependent exchange of simulation models. 09 2012.

[3] J. de Kleer and B. C. Williams. Diagnosing multiple
faults. Artificial Intelligence, 32(1):97–130, 1987.

[4] J. De Kleer and B. C. Williams. Diagnosis with behav-
ioral modes. In 11th International Joint Conference on
Artificial Intelligence - Volume 2, page 1324âĂŞ1330,
1989.

[5] G. Friedrich, G. Gottlob, and W. Nejdl. Hypoth-
esis classification, abductive diagnosis and therapy.
In Proceedings of the International Workshop on Ex-
pert Systems in Engineering, Vienna, September 1990.
Springer Verlag, Lecture Notes in Artificial Intelli-
gence, Vo. 462.

[6] P. Fritzson. Principles of object-oriented modeling and
simulation with Modelica 3.3: a cyber-physical ap-
proach. John Wiley & Sons, 12 2014.

[7] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter. Combina-
torial software testing. Computer, 42(8):94–96, 2009.

[8] E. MuÅąkardin, I. Pill, and F. Wotawa. Catio -
a framework for model-based diagnosis of cyber-
physical systems. 2020.

[9] I. Pill and T. Quaritsch. RC-Tree: A variant avoid-
ing all the redundancy in Reiter’s minimal hitting set
algorithm. In IEEE Int. Symp. Software Reliability En-
gineering Workshops (ISSREW), pages 78–84, 2015.

[10] I. Pill and F. Wotawa. On using an i/o model
for creating an abductive diagnosis model via com-
binatorial exploration, fault injection, and simula-
tion. In 29th International Workshop on Principles
of Diagnosis (DX’18), 2018. http://ceur-ws.org/Vol-
2289/paper9.pdf.

[11] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57–95, 1987.

[12] R. Reiter and J. Kleer. Foundations of assumption-
based truth maintenance systems: Preliminary report.
pages 183–189, 01 1987.

[13] M. Sayed-Mouchaweh (editor). Diagnosability, Secu-
rity and Safety of Hybrid Dynamic and Cyber-Physical
Systems. Springer Publishing Company, Incorporated,
1st edition, 2018.

[14] J. M. Voas and G. McGraw. Software Fault Injection:
Inoculating Programs against Errors. John Wiley &
Sons, Inc., 1997.

[15] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn. Acts: A
combinatorial test generation tool. In 2013 IEEE Sixth
International Conference on Software Testing, Verifi-
cation and Validation, pages 370–375, March 2013.

	Introduction
	Preliminaries
	About CatIO
	Using the CatIO framework

	Running Example
	Demonstrating CatIO's Capabilities
	Data Selection and Scenario Generation
	Modeling with CatIO
	Diagnosing with CatIO
	Repair and Compensation
	Further capabilities of CatIO

	Conclusion and Future Work

