
Java2CSP: A tool for compiling Java programs into constraints for automated
fault localization

Vlad Andrei Dumitru1 and Franz Wotawa2

1 Graz University of Technology
e-mail: dumitru@tugraz.at

2Institute for Software Technology, Graz University of Technology
e-mail: wotawa@ist.tugraz.at

Abstract

Fault detection and fault localization in programs
is considered a hard task where especially in case
of fault localization heavy manual work is still
needed. In this paper, we contribute to research
activities of automated program debugging and
present a tool that allows compiling a subset of
Java into an equivalent constraint representation.
The constraint representation captures the current
behavior of the program and can be directly used
for fault localization relying on consistency-based
diagnosis. A web interface of the tool is available
for the public. Besides discussing the underlying
foundations, we also present the tool’s architec-
ture and internals, and how to carry out a debug-
ging session. Furthermore, we released the under-
lying program as open source for further support-
ing research in model-based debugging.

1 Introduction
Faults in software have always lead to trouble. Blogs1

mentioned research indicating that about $2.8 trillion in the
US alone because of software not fulfilling quality criteria.
Software bugs also have harmed people, e.g., a software bug
in Therac-25 caused patients to receive a massive overdoses
of radiation during medical treatment2. Hence, detecting
and removing bugs from software is of utmost importance.
It is also worth noting that bugs not only cause safety issues
arising or increased costs, but also directly compromise the
security of systems allowing attackers to access private in-
formation or cause other damages.

In this paper, we focus in particular on locating bugs in
software. There has been a lot of approaches focusing on
automated (or semi-automated) debugging. Most recently
Wong and colleagues [1] summarized different approaches
that have been published. Interestingly about 20% of re-
search papers have utilized model-based reasoning for this
purpose. We follow this line of debugging research in this
paper and discuss an implementation of a debugging tool
that is available for the public. The main purpose of the tool
is on supporting research in this particular domain and to

1See https://www.softwaretestingnews.co.uk/
the-real-cost-of-software-bugs/

2See https://en.wikipedia.org/wiki/List_of_
software_bugs

Figure 1: A hybrid automaton representing the specification
of our running example.

provide a running system where others can carry out exper-
iments and provide extensions.

Specifically, we are going to discuss the tool Java2CSP
allowing to convert Java programs into the SMT-LIB 3 con-
straint representation that can be used by constraint solvers
like Z34 [2]. The underlying ideas behind have alread been
published. Wotawa and colleagues [3] provided the basic
foundations behind such a conversion taking ideas from [4]
and [5]. However, the idea behind making use of constraints
in the context of program development is even older, e.g.,
see [6] where the authors make use of constraint solving
for test case generation. The Java2CSP tool provides a
constraint representation where the basic concepts of model-
based diagnosis [7; 8] are represented. In particular, the rep-
resentations makes us of the ab predicate allowing to state
the health of a component and in case of programs of a state-
ment. It is worth noting, that the constraint representation is
not restricted to debugging, but can also be used for gener-
ating test cases when setting the health states of components
to work as expected.

In the following, we briefly introduce the underlying de-
bugging approach making use of a small example program.
In Figure 1 we outline the underlying specification of the
example where we have a system comprising two states 0
and1. In both states we have a function mapping an in-
put, i.e., x, to an output y, which are different. A variable
trans is used to move from one state to another.

In Figure 2 we depict the faulty implementation where
in Line 13 we have a bug. Such bugs may occur because

3See http://smtlib.cs.uiowa.edu
4See https://github.com/Z3Prover/z3

https://www.softwaretestingnews.co.uk/the-real-cost-of-software-bugs/
https://www.softwaretestingnews.co.uk/the-real-cost-of-software-bugs/
https://en.wikipedia.org/wiki/List_of_software_bugs
https://en.wikipedia.org/wiki/List_of_software_bugs
http://smtlib.cs.uiowa.edu
https://github.com/Z3Prover/z3

1. public class Test {
2. public void foo (int x, int state, int trans) {
3. int y;
4. int new_state;
5. if (state == 0) {
6. y = 3*x;
7. if (trans == 1) {
8. new_state = 1;
9. }

10. } else {
11. y = -2*x;
12. if (trans == 1) {
13. new_state = 1; // Bug! Should be: new_state = 0
14. }
15. }
16. }
17. }

Figure 2: A small example program where method foo implements a simple deterministic finite automaton.

of copy actions. In the particular example, a programmer
may copy the code from lines 7–9 but forgot to make the
appropriate changes. Such a bug can be revealed using the
following inputs and expected outputs:

(x,state,trans,y,new_state,) = (1, 1, 1,−2, 0)

When calling the function foo in the implemented class
Test using the given inputs, we obviously receive a correct
value for y but an incorrect one for new_state and we are
interested in finding the root cause. In model-based diagno-
sis and also model-based debugging, we make use of the ab
predicate to state the health state of a component, in this case
a statement explicitly. In case of debugging each statement
is converted into a constraint. E.g. the statement 11. y
= -2*x; is mapped into an equation looking similar to
ab11 ∨ (y = −2 ∗ x)5. In this equation, we either assume
that the statement 11 is not working as expected or the con-
straint corresponding to the statement has to be applied.

Diagnosis is performed via setting the ab’s accordingly
such that the constraints representing statements are not in
contradiction with the information provided by the given
test case. In the case of foo and the given test case, only
Line 12 and Line 13 can explain the faulty behavior.

We organize the paper as follows. In order to be self-
contained we first briefly discuss the underlying basic defi-
nitions of our tool. Afterwards, we discuss the Java2CSP
architecture, functionality, the user interface, the capabili-
ties and limitations. Finally, we summarize the paper.

2 Basic foundations
In the following we outline the basic definitions and con-
cepts behind converting programs into a semantically equiv-
alent constraint representation. For more details, we refer
the interested reader to Wotawa et al. [3]. The conversion
is done in 3 steps. In the first step we eliminate all loops
and recursive function calls. For loops this can be done via
converting them into nested if-then-else statements. For ex-
ample, a loop while C { B }, is represented as

5In the real conversion we have to take care of different state-
ments re-defining variable new_state. We are going to discuss
this in Section 2 in more detail.

if C {
B
if C {

B
if C {

. . .
The number of nested if-then-else statements has to be

chosen assuring that the maximum number of iterations can
be handled. For the case of debugging or test case gener-
ation, this can be achieved. In the former case we know
the passing and failing tests and, therefore, also the num-
ber of iterations. We may set the nesting depth to a larger
value. Moreover, we may also add an else-part after the last
if-part, where we raise an error. This allows us to explicitly
state the limitations of this conversion step. For recursive
calls we apply a similar method.

In the second step, we convert the loop-free program into
its static single assignment form (SSA). The SSA guaran-
tees that every variable is defined only once. Moreover, the
conversion only requires to be executed for assignment and
if-then-else statements. The SSA conversion makes use of
indices applied to variables. For every variable we introduce
an index starting with 0. Every time a variable is (re-) de-
fined the index is increased during conversion. For example,
consider the following program fragment:

1. x = y + 1;
2. x = x * 2;

The SSA form of this program is:
1. x1 = y0 + 1;
2. x2 = x1 * 2;

For if-then-else statements the SSA form can also be eas-
ily obtained. We only need to convert the then- and the else-
branch separately using different indices. Afterwards for
every variable that is defined we introduce a function Φ that
sets the value depending on the condition C, i.e.:

xi = Φ(C, xt, xe)

where t is the last index of variable x in the then-branch,
and e the last index of the same variable from the else-
branch. Φ obviously is defined as follows:

Φ(C, x, y) =

{
x if C is true
y otherwise

In the final step of the conversion, we only have to map
the SSA into a set of constraints. This is simple, because in
the SSA we only make use of assignment statements. For
example, x1 = y0 + 1 can be directly converted into an
equation x1 = y0 + 1. For more complex expressions, there
are additional steps required, which are similar to conver-
sions into three-address code well-known in compiler con-
struction.

It is worth noting that we do not only convert a state-
ment into a constraints but we also add information required
for diagnosis. Hence, we introduce a variable abj for ev-
ery statement j and map the statement Sj into a constraint
abj ∨ S′

j , where S′
j is the equation representing statement

Sj . Applying the described conversion on method foo de-
picted in Figure 2, we obtain the set of constraints given in
Figure 3 that can be directly feed into Z3.

In order to debugging a program converted into con-
straints, we also have to have a failing test case and its con-
straint representation. For method foo we know that

(x,state,trans,y,new_state,) = (1, 1, 1,−2, 0)

is such a test case. This test case can be easily represented
using the SMT-LIB presentation:

(assert (= x_1 1))
(assert (= state_1 1))
(assert (= trans_1 1))
(assert (= y_3 -2))
(assert (= new_state_5 0))

Following the basic definitions of Reiter ?? we can di-
rectly use Z3 to compute diagnoses.
Definition 1. Given a diagnosis system (SD,COMP) and
a set of observations OBS. A set ∆ is a diagnosis if and
only if SD∪OBS∪{ab(c)|c ∈ ∆}∪{¬ab(c)|c ∈ COMP \
∆} is satisfiable. A diagnosis is said to be minimal if there
is no subset that itself is a diagnosis.

In the case of debugging using the conversion described
before SD is the set of constraints (e.g., the SMT-LIB rep-
resentation given in Figure 3), OBS is the set of assert’s,
and COMP is the set {ab0, . . . , ab6} representing the state-
ments of method foo. Note that the last statement of the
SMT-LIB presentation of foo is used to search for the
smallest number diagnoses first. It is also worth noting that
Z3 only allows to compute one diagnosis at a time. What
can be done is to compute one diagnosis, add a constraint
that this diagnosis is not allow and use Z3 again for com-
puting the next diagnosis. This process can be continued
until no further diagnoses can be computed.

Using the SMT-LIB representation of foo and the def-
inition of diagnosis, we finally obtain the following three
minimal diagnoses using Z3 as constraint solver:

• Statement 13 new_state = 1

• Statement 12 if (trans == 1) . . .

• Statements 6, 7, and 8 together

In the next section, we describe the conversion tool
Java2CSP, and the interaction with the tool in more detail.

3 The Java2CSP tool
The Java2CSP tool comes as a package of three individ-
ual parts — the service, performing the transformation of
source code into a constraint satisfaction problem, z3aas,

which solves the CSP, and front, a web interface for putting
the two aforementioned service together into a user-friendly
environment.

The reason behind splitting the tool into three parts is to
allow future developments of tools which take advantage
of the API offered by the service directly. Furthermore,
as solving the CSP is the most computationally-demanding
task, it makes sense to isolate this functionality in order to
be able to offload it to a different machine.

3.1 Intermediate Language
Java2CSP is made to be extendable to other programming
languages of a similar nature to Java (i.e., imperative, proce-
dural). Any language which can be lowered into the internal
representation language (IL) can make use of the existing
infrastructure.

The IL is composed of two languages: Firstly, a lan-
guage of expressions describes pure computations, whose
evaluation involves consuming the state6 and producing val-
ues. Secondly, a language of statements describes state-
altering computations, whose evaluation involves consum-
ing the state and producing a new one.

The expression language is composed of the following
types of operations:

• Unary operations — logical negation (bool→bool)
and arithmetic negation (int→int, float→float).

• Binary operations
– Arithmetic — addition, subtraction, multi-

plication, division and modulo defined as
int×int→int and float×float→float;

– Equality — defined as any×any→bool;
– Logical — conjunction, disjunction defined as
bool×bool→bool;

– Ordering — ≥,≥,≤,≤ defined as
int×int→bool and float×float→bool.

• References — expressions which evaluate to the value
of a binding from the state (i.e., the value of a variable).

• Array references — expressions which extract an item
from an array by its index, by first retrieving the array
from the state, and then retrieving an item within the
array. The array must be a reference, and the index
expression must evaluate to an int value.

• Literals — expressions which evaluate to the values
contained within (e.g. int, float, bool).

The statement language is composed of the following
types of operations:

• Declaration statements set the type of a variable in the
current environment. Re-definitions are not allowed,
and the declaration of a variable must precede assign-
ment statements which set its value.

• Assignment statements update the value of a variable in
the environment. The assigned expression must resolve
to the same type that was used to declare the variable.

• Block statements chain together multiple statements to
be executed in order.

• Conditional statements (if and if/else) yield results de-
pending on a predicate condition.

6State is represented by a mapping from symbols (identifiers)
to values and types.

(declare-const y_1 Int)
(declare-const ab_0 Bool)
(declare-const y_0 Int)
(declare-const new_state_2 Int)
.....
(assert (or ab_0 (= temp_0_0 (= state_1 0))))
(assert (or ab_1 (= y_1 (* 3 x_1))))
(assert (or ab_2 (= temp_1_0 (and temp_0_0 (= trans_1 1)))))
(assert (or ab_3 (= new_state_1 1)))
(assert (= new_state_2 (ite temp_1_0 new_state_1 new_state_0)))
(assert (or ab_4 (= y_2 (* (- 0 2) x_1))))
(assert (or ab_5 (= temp_2_0 (and (not temp_0_0) (= trans_1 1)))))
(assert (or ab_6 (= new_state_3 1)))
(assert (= new_state_4 (ite temp_2_0 new_state_3 new_state_2)))
(assert (= y_3 (ite temp_0_0 y_1 y_2)))
(assert (= new_state_5 (ite temp_0_0 new_state_2 new_state_4)))
(assert (= objective (+ (ite ab_0 1 0) (ite ab_5 1 0) (ite ab_1 1 0) (ite ab_6 1 0)

(ite ab_2 1 0) (ite ab_3 1 0) (ite ab_4 1 0))))

Figure 3: The SMT-LIB presentation of method foo from Figure 2 (ignoring some declare-const items.

• Loop statements are equivalent to the while statement
in languages such as Java and C — the body is executed
as long as the predicate condition evaluates to true.

• Return statements end the execution of the program,
yielding a value.

3.2 Java lowering
Input code is submitted in the form of a Java class decla-
ration, containing one or more (static) methods. The class
declaration unit is transformed into a list of the methods de-
fined within. Method declarations are lowered into methods
regardless of their access modifiers. All methods declared
inside a class will also appear in the model’s flat sequence
of methods.

Mapping from Java to the internal format is unfortunately
not a bijective mapping, due to the different way in which
JavaParser 7 and Java2CSP understand the meaning of ex-
pression and statement. For example, JavaParser sees int
a = 1; as an expression statement containing an assign-
ment expression. The Java2CSP IL sees this as an assign-
ment statement. Java expression statements (assignment
expressions and variable declaration expressions) are con-
verted into assignment and declaration statements respec-
tively. Furthermore, compound assignment statements (eg.
a += b;) are lowered into simple assignment statements
(eg. a = a + b;).

Example A few correspondences between Java (left) and
the IL (right).

1 int a; ["declare", "a", "int"]
2 a = 0; ["assign", ["ref", "a"], ["int", 0]]
3 int a = 0; ["block", ["declare", "a", "int"],
4 ["assign", ["ref","a"], ["int", 0]]]

Expression support Literal value expressions (int,
float, and bool), name expressions, array access expres-
sions, a subset of unary and binary operations (the ones with
direct correspondents in the IL).

7The parser used in the Java pipeline frontend. See https:
//javaparser.org/

Statement support Expression statements (see above),
block statements, and some control flow statements (if,
while and return).

3.3 Workflow
In the development of the tool, the following workflow was
assumed: given a method for which a failing test case ex-
ists (and therefore from the test case, input parameters and
expected values can be extracted), a diagnostic is produced
in the form of a set of statements which are considered to
be faulty. Since the diagnostic may indicate that otherwise
correct statements are the issue, a mechanism allows users
to specify that some statements are definitely correct.

The web-based interface is modelled after this workflow:

1. Submit Code — code of the source program (in the
form of a class definition containing one or more meth-
ods) is submitted and lowered into the IL;

2. Setup Test Scenario — the method under test is se-
lected and applied on the given input arguments;

3. Additional Constraints — expectations related to the
values of variables at different points in execution are
submitted;

4. CSP Formulation — the CSP (offered in the SMT-LIB
format) can be inspected. Furthermore, a job can be
submitted with a query containing the formulation, in
order to produce a diagnostic. At this step, false abnor-
mals8 can be set, after which a new diagnostic can be
requested.

3.4 Service overview
The service acts as an HTTP server, offering a stateless in-
terface through which queries related to the individual trans-
formation passes can be submitted. From an external per-
spective, the service can be seen as a sequence of three trans-
formation passes:

1. The frontend, responsible for converting input source
code into the IL. This functionality can be requested

8Markers which tell the solver that certain statements are to be
assumed not faulty.

https://javaparser.org/
https://javaparser.org/

from the service by issuing a POST request with
the program source code as payload to the route
/from/java. Even though at the time of this writ-
ing the only supported input language is Java, the route
structure allows future extensions.

2. The transformation pipeline, converting from the
source program’s internal representation into a set of
constraints and an optimization objective.

3. The backend, converting the transformation pipeline’s
output into a form which can be understood by external
tools for executing the CSP such that a diagnosis can
be produced. At the service level, there are two routes
handling this process — /to/smtlib, producing
SMT-LIB compatible source code, and /to/z3aas,
producing a query for the z3aas service.

Frontend
(FromJava)

Statement
Indexer

Parameter
Applicator

Loop
Unroller SSA

Backend
(ModelGen)

IR IR

IR

LF-IR SSA-IR

source code
method

under test
input

parameters

observables

observations

false
abnormals

diagnostic

Furthermore, the transformation pipeline is made up of
five individual passes:

Statement Indexer walks the AST and assigns a unique
identifier to every statement, in order to keep track of the ori-
gins of statements during subsequent transformation passes,
which might otherwise rewrite the original statements.

Parameter Applicator prepends method parameter dec-
larations and initializations to the body of a method, pro-
ducing a sequence of statements which follow the execution
of the method with the given parameters applied.

Loop Unroller transforms loop statements into nested
conditional statements up to a certain level (which is by de-
fault 5, but can be overridden by decorating the loop with a
comment indicating the number of unroll steps to use).

SSA performs static single assignment transformation,
producing a sequence of (assignment) statements such that
every variable is assigned to only once.

Model Generator produces a constraint satisfaction prob-
lem in a generic, internal form, given the execution trace re-
sulted from the SSA transformation, a set of observations
and a set of false abnormals.

3.5 Service interface
The service exposes the individual passes9 through HTTP
routes. Successful responses return a status code of 200,
while malformed or erroneous requests return 400. Lastly,
status code 500 is reserved for bugs inside the transforma-
tion pipeline.

What follows is an example interaction with the tool at
the HTTP request level.

The first step involves submitting the input source code to
the frontend in order to get a representation of the code in
the intermediate language. This is done by issuing a POST
request to /from/java. Given the example code in Figure
2, a partial response is reproduced below:

1 { "name": "foo",
2 "params": {
3 "x": "int", "state": "int", "trans": "int" },
4 "body": ["block", [
5 ["declare", "y", "int"],
6 ["declare", "new_state", "int"],
7 ["if-else",
8 ["eq?",
9 ["ref", "state", {"range":"6:9-6:13"}],

10 ["int", 0, {"range":"6:18-6:18"}],
11 {"range":"6:9-6:18"}],
12 ...

All expressions and statements which originate from the
input source code contain metadata related to their posi-
tion, again for the purpose of easily tracking down effects
of transformations.

The next step in the pipeline is parameter applica-
tion, which is done by performing a POST request to
/pass/apply with a payload containing the method to
be used and the parameters to be applied.

Transformation into a loop-free representation is handled
by the /pass/unroll route, and SSA transformation is
handled by /pass/ssa.

At this point, the SSA internal language is represented
slightly differently, as variables have an index property:

1 [["assign", ["ref", "x", 1], ["int", 1]],
2 ["assign", ["ref", "state", 1], ["int", 1]],
3 ["assign", ["ref", "trans", 1], ["int", 1]],
4 ["assign", ["ref", "temp_0", 0],
5 ["eq?",
6 ["ref", "state", 1],
7 ["int", 0]],
8 0],
9 ...

A note to be made about the representation is that the first
three assignment statements do not have an index property,
whereas the last statement in the listing has the index 0. This
is because the first three assignments come from initializing
the parameters of the function, and not from code which was
input by the user.

The CSP formulation in the SMT-LIB language can be
requested through the /to/smtlib route. For immediate
execution, the /to/z3aas route produces a query for the
z3aas service, which can be directly sent to the server to
submit a job to solve the constraint satisfaction problem.

In Figure 3 we outline the use of the Java2CSP tool
when debugging the foo method from Figure 2. In the
first step we insert the source code of foo into the tool.
After pressing the Next button, we have to specify the in-
put values in Step 2. Note that in the tool the values have
to be specified using the following form (type value),
where type can be int, float or bool, and value the

9with the exception of the statement indexer, which is fused
together with the frontend, emitting indexed statements

!

"

#

$

%

Copy you
program to
the text field

Specify the
input values

Specify the
expected
output values

Start
debugging
using Z3

Have a look at
the first
diagnosis.
You can re-run
debugging

Figure 4: An example run through Java2CSP.

value. After pressing Apply, we arrive in Step 3, where we
can add the expected output or any intermediate value. We
have to do this for the variable comprising an index. The
largest index stands for the last value the variable takes in the
program. After pressing Nextwe arrive at Step 4, where we
are able to start debugging via pressing the Run button. In
each step only one fault candidate is delivered. However, via
marking a certain statement as being not faulty and pressing
Run again, we are able to proceed with debugging until no
further candidates can be computed.

3.6 Distribution
Java2CSP is open-source, released under the terms and
conditions of the MIT License. The three components are
developed in lock-step, so the master branch of all three
should make a working configuration.

The service is hosted at https://git.sr.ht/
~dumitru/modelinho-service. Building from
sources requires a Java Development Kit (JDK) and sbt10.
A self-contained Java archive (JAR) is produced.

The frontend is hosted at https://git.sr.ht/
~dumitru/modelinho-front. Building from sources
requires Node.JS11 and NPM12. The produced static arti-
facts need to be hosted by an HTTP server.

10The Scala Simple Build Tool. See https://www.
scala-sbt.org/

11See https://nodejs.org/en/
12The Node Package Manager. See https://www.npmjs.

com/

z3aas is hosted at https://git.sr.ht/
~dumitru/z3aas. A Python installation is required, as
well as pip13 in order to install the required dependencies.
z3aas also requires a Redis14 node in order to be able to
save the results of jobs.

A Docker-based distribution packing all of the service
in one container is also available at https://git.sr.
ht/~dumitru/modelinho-container. Starting the
container will build the project from sources, from the latest
version in the repositories.

4 Conclusions
In this paper, we discussed the foundations and implemen-
tation details of the Java2CSP tool, which maps Java pro-
grams into a constraint representation that can be directly
utilized for locating bugs. The tool is publicly available and
intended to serve as a proof-of-concept for the applicability
of model-based reasoning for fault localization. Besides the
tool itself its source code is also open source enabling others
to contribute and further improve the tool.

Acknowledgments
The research presented in the paper has been funded in part
by the Austrian Research Promotion Agency (FFG) under
grant 865248 (Securing Web Technologies with Combina-
torial Interaction Testing - SecWIT).

References
[1] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and

Franz Wotawa. A survey on software fault localization.
IEEE Trans. Software Eng., 42(8):707–740, 2016.

[2] Leonardo de Moura and Nikolaj Bjørner. Z3: An ef-
ficient smt solver. In C. R. Ramakrishnan and Jakob
Rehof, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[3] Franz Wotawa, Mihai Nica, and Iulia Moraru. Auto-
mated debugging based on a constraint model of the
program and a test case. J. Log. Algebraic Methods Pro-
gram., 81(4):390–407, 2012.

[4] H. Collavizza and M. Rueher. Exploring different
constraint-based modelings for program verification. In
In Principles and Practice of Constraint Programming
(CP 2007), pages 49–63, Providence, RI, USA, Septem-
ber 2007.

[5] F. Wotawa and M. Nica. On the compilation of pro-
grams into their equivalent constraint representation. In-
formatika, 32:359–371, 2008.

[6] A. Gotlieb, B. Botella, and M. Rueher. Automatic test
data generation using constraint solving techniques. In
In Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA), 1998.

[7] Raymond Reiter. A theory of diagnosis from first prin-
ciples. Artificial Intelligence, 32(1):57–95, 1987.

[8] Johan de Kleer and Brian C. Williams. Diagnosing mul-
tiple faults. Artificial Intelligence, 32(1):97–130, 1987.

13The Python Package Installer. See https://pypi.org/
project/pip/

14In-memory data structure store. See https://redis.io/

https://git.sr.ht/~dumitru/modelinho-service
https://git.sr.ht/~dumitru/modelinho-service
https://git.sr.ht/~dumitru/modelinho-front
https://git.sr.ht/~dumitru/modelinho-front
https://www.scala-sbt.org/
https://www.scala-sbt.org/
https://nodejs.org/en/
https://www.npmjs.com/
https://www.npmjs.com/
https://git.sr.ht/~dumitru/z3aas
https://git.sr.ht/~dumitru/z3aas
https://git.sr.ht/~dumitru/modelinho-container
https://git.sr.ht/~dumitru/modelinho-container
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://redis.io/

	Introduction
	Basic foundations
	The Java2CSP tool
	Intermediate Language
	Java lowering
	Workflow
	Service overview
	Service interface
	Distribution

	Conclusions

