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Abstract

When a robotic agent experiences a failure while
acting in the world, it should be possible to dis-
cover why that failure has occurred, namely to di-
agnose the failure. In this paper, we argue that
the diagnosability of robot actions, at least in a
classical sense, is a feature that cannot be taken
for granted since it strongly depends on the un-
derlying action representation. We specifically
define criteria that determine the diagnosability
of robot actions. The diagnosability question is
then analysed in the context of a handle manipu-
lation action, such that we discuss two different
representations of the action - a composite policy
with a learned success model for the action pa-
rameters, and a neural network-based monolithic
policy - both of which exist on different sides of
the diagnosability spectrum. Through this com-
parison, we conclude that composite actions are
more suited to explicit diagnosis, but representa-
tions with less prior knowledge are more flexi-
ble. This suggests that model learning may pro-
vide balance between flexibility and diagnosabil-
ity; however, data-driven diagnosis methods also
need to be enhanced in order to deal with the com-
plexity of modern robots.

1 Introduction
When developing robotic agents, system designers are pri-
marily concerned with the capabilities of the robot, namely
with what the robot is able to do (what actions1 it can per-
form) and how well it does that (measured by some pre-
defined performance criteria). When robots are deployed
in everyday environments, they are, however, bound to ex-
perience failures of different natures [Fallatah et al., 2019;
Gross et al., 2019]. When a failure happens, it should be
possible to easily identify the causes: from the perspective

∗This work was supported by the B-IT foundation
1For the purposes of this paper, we partially adopt the defini-

tion of an action in [Zech et al., 2019], namely we see an action as
"something an agent does that was intentional under some descrip-
tion, that is caused by both the agent’s current internal state and
external percepts, is adaptive and deterministic to achieve desired
effects..." Essentially, as in classical planning, we consider an ac-
tion as having some preconditions and achieving some effects, but
we make no assumptions about the effects being deterministic.

of the robot’s user, this may increase the trust in the sys-
tem [Fallatah et al., 2019], while from the perspective of
the robot designer, this is important so that the system can
be improved. Failure diagnosis is also relevant in terms of
complete autonomy and lifelong learning: if a robot has a
means to diagnose itself, it could use the information for
improving its interaction with the world in order to avoid
such failures.

Traditional consistency-based diagnosis approaches [de
Kleer and Williams, 1987; Reiter, 1987] require a nomi-
nal model of operation of a system, where the model may
be discrete, continuous, or hybrid [Bouziat et al., 2018;
Provan, 2018]. The existence of a model allows diagno-
sis hypotheses to be generated as violations of the model;
such hypotheses can then be analysed based on their likeli-
hoods, or by applying sequential diagnosis that would elim-
inate hypotheses that are inconsistent with some observa-
tions. In the context of robot actions, the effort required
for creating explicit models of execution is usually too time
consuming and not very flexible; this is for instance illus-
trated by the naive physics model in [Kuestenmacher et al.,
2014]. For this reason, robot action representations often in-
volve a learning aspect, which may be as simple as mapping
some action parameters to predicted success or as complex
as end-to-end visuomotor learning.

In this paper, we discuss learning-based action modelling
mechanisms for modern robots and analyse their diagnos-
ability in terms of the ability to generate hypotheses for why
a robot fails when performing an action. We argue that the
diagnosability of action formalisms exists on a continuum
and is proportional to the modelling effort that goes into
the action design; however, we also argue that modelling
effort usually affects the flexibility of the representation.
We ground our argument by analysing two learning-based
models of a handle manipulation action for a Toyota HSR
robot [Yamamoto et al., 2019] - the first one learns a suc-
cess model of handle grasping parameters based on sparse
feedback, while the second learns a visuomotor policy ac-
cording to a specified performance criterion that the robot
should maximise. We then conclude with some remarks on
the challenges of diagnosing robot actions and the need for
either model-free diagnosis methods or strategies that learn
diagnosis models in order to deal with the complexity of
modern robotic systems.

We organise this paper as follows. In section 2, we dis-
cuss some criteria for robot action diagnosability as well as
levels of diagnosability depending on who is able to diag-
nose action executions and subsequently leverage this infor-



mation. We then briefly discuss various contemporary ac-
tion modelling and learning approaches in section 3 and in-
troduce the handle manipulation use case in section 4, such
that we analyse our representations of the action in terms of
the diagnosability criteria defined in section 2, as well as in
terms of modelling effort and flexibility. We finally make
some concluding remarks in section 5.

2 Robot Action Diagnosability
In robotics, actions are usually driven by high-dimensional
or continuous inputs and may produce continuous outputs,
such that the problem of diagnosing robot actions can of-
ten be seen as that of analysing the inputs as well as the
mapping that produces the action outputs. Before looking at
action formalisms in robotics, we define a set of criteria that
determine the diagnosability of robot action representations.
We also discuss different levels of diagnosability depending
on what execution information is exposed and who is able
to utilise it.

2.1 Criteria for Diagnosability
In order for robot actions to be diagnosable, we argue that
they need to satisfy at least a few criteria: (i) abstractability,
(ii) predictability, and (iii) composability. We discuss each
of these criteria below.

Action abstractability determines the ease of reasoning
about why a robot has chosen to execute an action in a
certain manner or, equivalently, why the action was pa-
rameterised in a particular way. We define abstractabil-
ity as the complexity2 involved in finding a mapping A(a)
for every action a in a set of actions A, which converts
a to an abstract form on which reasoning can be per-
formed. We note that A can be defined as an identity map-
ping, or it may be created alongside a parametric model
of the action, as we have done in [Mitrevski et al., 2020;
2017], where both a continuous and a discrete model of ac-
tion execution are learned (here, the discrete model of exe-
cution represents an action abstraction).

Robot actions should also be predictable in the sense that
small changes in the action input should result in predictably
small changes in the output, namely a(x) ≈ a(x + ε) for a
given state x and noise ε. Predictability can be seen as im-
posing a smoothness criterion on actions that simplifies the
exploration of the action parameter space. This is important
in the diagnosis context since diagnosis may require explor-
ing alternative action parameterisations, and predictability
allows doing this more systematically.

A further aspect that is necessary for robot action diag-
nosability is composability. Given two actions ai and aj ,
the composition of these is defined as (aj ◦ ai)(x). A pair
of composable actions ai and aj is generally preferred to
a meta-action â that combines the two since composability
allows a robot to reuse actions for accomplishing different
tasks, but more importantly for diagnosis, action decompo-
sition makes it possible to assign blame more accurately.
In other words, using an action â rather than a set of com-
posable actions complicates the analysis of failure causes
since all underlying components are then equally suspect.
Composability at a very low level of abstraction can also be

2In this context, complexity is a qualitative attribute that en-
compasses various notions including representation, computation,
and amenability to reasoning.

detrimental to diagnosis, however, due to an overly granular
structure of the action components.

2.2 Levels of Diagnosability
As mentioned in section 1, diagnosability of actions may
serve different purposes, namely it could be used by robot
designers to improve the system, help robot users under-
stand and gain trust in the robot, but also allow robots them-
selves to reason about their execution. These different uses
of action diagnosis can also be seen as defining three levels
of action diagnosability.

The first level of diagnosability is rather rudimentary, al-
lowing system designers to analyse failed executions in or-
der to identify failure causes and modify the system so that
similar failures can be subsequently avoided. This level of
diagnosability can be achieved by (i) making the robot’s
state as explicit as possible and (ii) extensive data logging,
as we have done in our earlier work [Mitrevski et al., 2018].

A second diagnosability level allows robot users to un-
derstand why a robot has made a certain decision. This
level of diagnosability is related to the abstractability crite-
rion defined above, as being able to create an abstraction of
the action mapping is a prerequisite for generating human-
understandable explanations of the robot’s decisions during
execution.

The third level of diagnosability is that which allows a
robot itself to reason about its execution so that it can im-
prove how it acts. This level of diagnosability requires a
robot to be able to discover causal relations between its ac-
tion parameterisations and the action outcomes. Extracting
causal relations is also important when a robot performs
multiple actions in succession, as the action that fails is not
always the one that has caused the failure.

It should be mentioned that the diagnosability levels do
not necessarily build on each other, particularly not when
considering the third level, which may be embedded inde-
pendently of the other two.3

3 Robot Action Representations
A traditional model of actions in robotics comes from the
planning domain, where an action a is described by a set
of preconditions P that need to hold for the action to be
performed and effects E that are expected to become true
after the execution of the action. A Markov Decision Pro-
cess (MDP) is another common representation of robot be-
haviour, which is defined as a tupleM = (S,A, T ,R, s0),
where S is a set of states, A is a set of primitive actions,
T : S × A → S = P (s′|s, a) is a transition model,
R : S × A → R is a reward function, and s0 is the initial
state. When modelling robots with an MDP, robot behaviour
is defined by a policy π : S → A, such that the objective is
to find an optimal policy π∗, which maximises the agent’s
expected return E

[∑T
t=0R(st, at)

]
. Optimal policies are

most often found using reinforcement learning.
In most practical applications, T is not known since it is

too difficult to model explicitly. For that reason, a policy is
usually learned using a model-free method, where a robot

3In other words, a robot may be able to diagnose its own fail-
ures and learn from them, but whether this knowledge is helpful
for the designer or the user depends on the level of abstraction at
which self-diagnosis is performed.



learns from experiences it collects while acting in its envi-
ronment. Learning is usually done in simulation, as most
learning algorithms require a large number of experiences
for finding a good policy, or are unsafe for learning with a
real system.

In this section, we briefly discuss various state-of-the-art
learning-based action representations, many of which use
the MDP formalisation and learn actions in a reinforcement
learning setup. We classify the learned action models into
two categories depending on the nature of the learned policy.

3.1 Density-Based and Symbolic Models
We first discuss representations in which action parameters
are represented in a symbolic form or using a probability
density function.

[Stüber et al., 2018] present a learning-based method that
allows a robot to choose how to push an object, and also
predict the motion of the object based on the chosen ac-
tion. The push action is represented by robot-object and
object-environment contacts, such that learning the action
amounts to learning the contact model and an object mo-
tion model. [Kazhoyan and Beetz, 2019] introduce a sys-
tem that parameterises actions in a plan by projecting pa-
rameterised versions of the actions in a simulator; this has
the purpose of checking for successful execution and opti-
mising some predefined execution criterion. Here, action
grounding rules are augmented by a set of failure cases in a
given scenario and by a set of predefined functions for set-
ting the action parameters. [Bozcuoǧlu et al., 2019] learn
an execution success prediction model, which can be used
for sampling robot positions that are likely to lead to a suc-
cessful execution of an action. The model is learned from
execution experiences, which are first clustered and then
combined into two Gaussian Mixture Models - one for the
successful executions and one for the failed executions; the
two models are then combined when making success predic-
tions. [Wang and Kroemer, 2019] present a method based
on which a robot can improve the execution robustness of
demonstrated tasks by leveraging contact information that is
collected during repetitions of the task. The objective is to
sequence skills, but also infer new skills, in a way that max-
imises task performance and provides the ability to recover
from failures. [Karapinar and Sariel, 2015] describe an ap-
plication of inductive logic programming (ILP) where the
objective is to discover failure rules for action execution that
explain a set of training examples. The rules learned by the
algorithm include various qualitative object aspects (colour,
shape, category) as well as numerical attributes, such as the
location of an object in the world frame. [Ames et al., 2018]
discuss probabilistic planning with parameterised skills (i.e.
actions that also depend on some parameters) and a proce-
dure for learning representations of the preconditions and
effects of such skills. Here, action parameters are sampled
and then clustered using DBSCAN for the purpose of learn-
ing symbols that appear in the preconditions and effects;
precondition-effect relations are then created from the clus-
ter transitions.

3.2 Neural Network-Based Models
The second category of actions we discuss use a neural
network-based policy, which is learned either in an end-to-
end fashion or with some guidance (either through the ar-
chitecture or through human demonstrations).

[Liu, 2020] present a learning-based grasping method that
takes task context and object affordances into account when
selecting a grasp. The task context is described by four
pieces of information: (i) a description of the task for which
the object is grasped (pouring, handing over, etc.), (ii) a state
description of the object to be grasped (hot, empty, etc.),
(iii) the affordance of the grasped object part, and (iv) the
material of the grasped part. [Lee et al., 2019] introduce
a multimodal network-based state representation that com-
bines image inputs, force measurements, and robot state in-
formation. The joint representation formed from these com-
bined inputs is then used as input to a learned continuous
policy for a peg insertion task. [Tremblay et al., 2018] dis-
cuss a multi-network system that is used for learning (from
observation) and generating plans for pick-and-place tasks.
In particular, the system includes four networks, all of which
are trained on synthetic data and are used in a sequential
manner at runtime: (i) an object detection network, (ii) a
network for recognising object relations, (iii) a network that
essentially produces a task plan based on the object rela-
tions, and (iv) a plan execution network. [Hermann et al.,
2020] describe an algorithm for creating a curriculum for an
RL agent that learns actions based on a small sample of hu-
man demonstrations, which provide initial guidance to the
learning agent. A network-based diagonal Gaussian policy
is learned here, such that the input to the policy network is
composed of two segments - a convolutional part processes
input images and a state segment takes in a robot state rep-
resentation.

4 Action Use Case: Handle Manipulation
In this section, we present two representations of a handle
manipulation action for domestic scenarios, which is use-
ful for tasks in which a robot needs to open doors or draw-
ers. The representations are mapped to the two categories
in section 3. In our first representation, we generate ran-
dom action parameters and use human feedback for evalu-
ating those; the samples are then represented by a density
model that is subsequently used for sampling execution pa-
rameters. In our second representation, we model handle
manipulation by an MDP and find an optimal policy using
a network-based reinforcement learning algorithm. We then
analyse these two representations in terms of the diagnos-
ability criteria defined in section 2.

4.1 Density-Based Model
Our density-based representation of the handle manipula-
tion action, which is illustrated in Fig. 1 in the context of
a kitchen drawer, splits the action execution into substeps.
The robot first detects the handle4 and determines its pose
using a point cloud. Once the handle pose is detected, we
sample execution parameters, such that we parameterise the
action by the distance between the robot’s end effector and
the center of the handle. Once these parameters are sam-
pled, the robot moves towards the handle using a demon-
strated arm trajectory5 and pulls the handle after grasping.
For learning, we sample action parameters from a uniform

4Detection is performed by a standard network-based object de-
tector.

5We represent demonstrated trajectories using motion primi-
tives, and use whole-body motion in case the handle is initially
outside the robot’s reach.



Figure 1: General framework of the density-based execution
model

distribution within the bounding box of the detected handle,
namely

∆p =

(
∆x ∼ U(xmin, xmax)
∆y ∼ U(ymin, ymax)
∆z ∼ U(zmin, zmax)

)
(1)

The executions are labelled as successful or unsuccessful
depending on whether the robot succeeds to grasp the han-
dle and subsequently open the drawer. The parameters of the
successful executions S are then used for learning a success
distribution, which we represent by a Gaussian distribution
N (µ,Σ). We learn the parameters θ = (µ,Σ) using max-
imum likelihood estimation under the assumption that the
samples are independent:

L(θ) = P (S|θ) =

N∏
i=1

P (∆pi|θ) (2)

This results in the usual estimates for the sample mean and
covariance:

µ =
1

N

N∑
i=1

∆pi

Σ =
1

N − 1

N∑
i=1

(∆pi − µ) (∆pi − µ)
T

(3)

During execution, the robot then samples parameters from
the learned success distribution, namely

∆p ∼ N (∆p|µ,Σ) (4)

4.2 Network-Based Policy
Our reinforcement learning-based model of the handle ma-
nipulation action uses a network-based policy. Both the
state and the action space are continuous: the state space
is represented by the measured joint angles of the robot and
the distance from the robot’s end effector to an estimated
pose of the handle, while the action space is given by torque

commands for the individual joints. To deal with this con-
tinuous action space, the output of the network represents a
diagonal Gaussian policy.

To train our robot, we use the MuJoCo-based6 DoorGym
environment [Urakami et al., 2019] and also adopt its re-
ward function:

rt = −a0dt−a1 log(dt+α)−a2ot−a3‖ut‖+a4ϕt+a5ψt

(5)
which rewards the robot for minimising the distance dt to
the handle and the difference in orientation ot between the
end effector and an optimal orientation for grasping the han-
dle, while also keeping the applied torques u as low as pos-
sible. The function additionally rewards opening a door
(specified by the door angle ϕt) and pushing down on a han-
dle (for door levers, specified by the handle angle ψt). Here,
a0−a5 are predefined constants. An illustration of our robot
in the simulated environment is given in Fig. 2.

Figure 2: The HSR in the learning simulation

We use the standard Proximal Policy Optimisation (PPO)
algorithm [Schulman et al., 2017] for training, which is an
on-policy method that controls the amount by which the pa-
rameters of the policy network change between two itera-
tions of the algorithm, thereby preventing drastic policy up-
dates.

4.3 Diagnosability of the Handle Manipulation
Action

We now analyse our two representations of the handle ma-
nipulation actions in terms of the diagnosability criteria and
diagnosability levels defined in section 2. We particularly
contrast the representations in terms of the criteria in order
to identify the aspects that make them more or less compli-
ant with those criteria.

Abstractability Neither of the representations include
an explicit abstractability mapping, but the density-based
model can be abstracted more directly than the network-
based policy. Since we map action parameters to predicted
execution success, an abstraction of the success model, or
alternatively, failure rules, could also be learned. An ab-
straction of the network-based policy could be created as
well, but this may require going through a process simi-
lar to that of learning our density-based model, except that
the purpose here would be to extract knowledge about the
learned policy rather than learning the policy itself.

6http://www.mujoco.org



Predictability In terms of predictability, we consider both
representations to be on a similar level since they are both
governed by a model that has smoothness imposed by
design (a Gaussian success model and a diagonal Gaus-
sian policy respectively). Additionally, both representations
have to process visual input in order to detect the handle
pose, so they would be equally affected by input noise; how-
ever, as the network-based policy is trained purely in simu-
lation, domain shift will have an added effect that may be
difficult to predict.

Composability Our density-based model has a high-level
compositional structure, since the execution of the action is
split into different subactions; this contributes to the diag-
nosability of the action, since the execution of each individ-
ual step can be analysed in isolation (additionally, our action
is designed so that if one of the subactions fails, the exe-
cution will not continue unless some recovery is possible).
The primitive actions of the network-based policy represent
joint motions, so we can say that the policy has a composi-
tional structure at a low level; however, since the robot’s be-
haviour is governed by a monolithic policy, blame can only
be assigned at the primitive level, which would produce po-
tentially uninformative diagnoses.

Diagnosability Levels In relation to the abstractability
criterion, both representations of the handle manipulation
action can be seen as having first-level diagnosability since
failed executions can be analysed based on the action inputs
(handle pose detections) and the decisions made based on
those. For the density-based representation, we also aimed
to incorporate some aspects of third-level diagnosability; in
particular, given its success model, the robot is in principle
able to predict the outcomes of different parameterisations
and subsequently verify whether the actual outcomes match
the predictions.

Modelling Effort and Flexibility It is also important to
analyse the two representations in terms of the effort that
goes into action design, but also in terms of the flexibility by
what is learned. The composability, which we argued is an
inherent part of the action, is manually specified rather than
discovered by the robot itself. Explicitly constraining the
success density to a particular family of distributions also
constitutes modelling knowledge. The fact that the robot
experiences are human-labelled is another aspect that po-
tentially reduces the action’s flexibility.7

The network-based policy, on the other hand, includes
less prior information and can thus be seen as more flexi-
ble. This, however, does not mean that no prior knowledge
is encoded there as well; in particular, the input to the policy
network combines the vision-based input with the robot’s
state, which essentially constitutes a prior. The reward func-
tion that defines the robot’s behaviour is a model in itself,
as is the nature of the policy represented by the policy net-
work. In fact, as demonstrated by [Jonschkowski and Brock,
2015], using prior knowledge is key to learning robot poli-
cies efficiently.

7Although it should be mentioned that the human labelling is
done for convenience and could just as well be automated, either
in simulation or using some aspect of self-supervision.

4.4 Challenges in Diagnosing Contemporary
Robots

The above comparison of action representations in the han-
dle manipulation context points to various challenges for di-
agnosing contemporary robots. First of all, diagnosis re-
quires a suitable level of representational abstraction, but
it is often unclear what constitutes an appropriate level of
abstraction. Related to this, robot actions often have a nat-
ural hierarchical structure, but how to leverage this struc-
ture without sacrificing the flexibility of learning algorithms
is an open problem, particularly when dealing with high-
dimensional state spaces, such as visual representations.
Similarly, action representations can also benefit from prior
knowledge about problems, which is also beneficial for di-
agnosis since priors are directly proportional to predictable
behaviour; however, too much prior knowledge can be detri-
mental to flexibility and generalisation. Finally, the exis-
tence of action representations that are significantly differ-
ent from a conceptual point of view complicates the devel-
opment of robot diagnosis methods, since a distinct set of
methods is generally required for dealing with the specific
details of each representation.

5 Summary and Conclusions
In this paper, we took a critical look at the diagnos-
ability of robot actions that are designed using various
common action representations, which we categorised into
symbolic/density-based and neural network-based. We also
defined criteria that are important for diagnosability of robot
actions, namely abstractability, predictability, and compos-
ability, and introduced three levels of diagnosability depend-
ing on whether the robot designer, robot user, or the robot it-
self benefit from the diagnosis information. We then looked
at two representations of a handle manipulation action be-
longing to the two action representation categories, and fi-
nally discussed some conceptual challenges of diagnosing
robot actions.

We conclude with some remarks on what we believe to
be promising avenues for improving the diagnosability of
robot actions. The models utilised by traditional diagnosis
methods do not seem to be scalable and flexible enough to
deal with the complexity and open-endedness of robot prob-
lems, but learning execution abstractions can be useful for
improving the diagnosability of robot actions. Furthermore,
learning composable structures as in [Ames et al., 2018] or
[Tremblay et al., 2018], as well as predictive models as in
[Stüber et al., 2018], can improve the self-supervision ca-
pabilities of robots, which is useful for predictability and
achieving the third level of diagnosability that we discussed
in this paper. Finally, sophisticated testing strategies, such
as [Zhang et al., 2018] are also relevant in the diagnosis con-
text, particularly for robots that rely on complex visuomotor
policies, since they may contribute to identifying unforeseen
problems with a policy.
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