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Abstract

Spectrum-based Fault Localization approaches aim to effi-
ciently localize faulty components within a buggy program by
collecting the execution patterns of various combinations of
components and the corresponding outcomes into a spectrum

that models the program behavior. Efficient fault localization,
i.e., locating the faulty component with less effort, depends
heavily on the quality of the spectrum. Previous approaches,
including the current state-of-the-art DDU approach, attempt
to generate “good” test-suites for efficient fault localization
by improving certain structural properties of the spectra.
In this work, we propose a different approach, Multiverse

Analysis, that considers multiple hypothetical universe, each
universe corresponding to a scenario where one of the compo-
nents is assumed to be faulty, to generate a spectrum that at-
tempts to reduce the expected worst-case expected effort over
all the universe. Our experiments show that the Multiverse
Analysis not just improves the efficiency of fault localiza-
tion but also achieves better coverage and generates smaller
test-suites over DDU, the current state-of-the-art technique.
Further, we found that the improvements over DDU for fault
localization are indeed statistically significant on the paired
Wilcoxon Signed-rank test.

1 Introduction

Spectrum-based fault localization (SFL) techniques (Abreu
et al. 2009) have proved immensely helpful for localizing
faults in large code-bases (Pearson et al. 2017). The SFL
techniques attempt to identify the faulty components based
on a statistical analysis of the test spectra, that captures in-
formation on the activity pattern of each test in the test-suite
(which test executes which components) and the resulting

outcomes (which tests fail).
The workflow of SFL is demonstrated in Figure 1. Given

a faulty program P with m components {c1, c2, . . . , cm}, a
test-suite generator can produce a test-suite T on P by op-
timizing a fitness function f . The function f is taken as a
measure of the quality of a test-suite. The activity pattern of
a test-case t 2 T can be represented as a m-dimensional bi-
nary vector where the i-th element is 1 if the corresponding
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Figure 1: SFL approach: The test-suite generator takes as
input a program P and a fitness function f and generates a
test-suite in the form of an activity matrix A. The fault oracle
takes A and P and generates an error vector E by executing
A on P . The fault localizer takes A and E and ranks the
components of P in descending order of suspiciousness

component ci was executed (activated) in test t. The behav-
ior of a test-suite consisting of n such test-cases can, there-
fore, be captured by an n⇥m-dimensional binary matrix A,
where the element aij is set to 1 if the i-th test executed the
j-th component of P . This matrix is referred to as an activ-

ity matrix; the rows of A correspond to the activity pattern of
test-cases while the columns correspond to the involvement

pattern of the corresponding components.
After T has been generated, a fault oracle executes T on

P and provides the outcome of each test-case t. The fault
oracles have access to a set of assertions which model cor-
rect program behaviour. By examining deviations from the
assertions, the oracle can deduce whether a test-case is pass-
ing or failing. The outcome of the test-cases is captured by
an n-dimensional binary error vector, E; if a test ti is found
to be a passing test, then the corresponding entity Ei = 0,
and for failing tests, Ei = 1. The activity matrix, A, and the
error vector, E, are together referred to as the spectrum over
the program P .

SFL techniques use this spectrum to rank the components
of P by their suspiciousness of being faulty. Over the years,



researchers have proposed various statistical metrics for the
above ranking: Ochiai (Abreu, Zoeteweij, and Van Gemund
2009a), Tarantula (Jones and Harrold 2005), Zoltar (Janssen,
Abreu, and Van Gemund 2009), Ample (Dallmeier, Lindig,
and Zeller 2005), and Jaccard (Chen et al. 2002) are some
of the popular ones. Developers are expected to examine the
components in the (decreasing) order of their suspiciousness
scores till the faulty component is identified; thus, one gener-
ally constructs an ordered list, L, by ranking the components
in descending order of their suspiciousness (see Figure 1).

The effectiveness of the SFL technique heavily depends
on the quality of the test-suite for diagnosabilty, and can be
measured by the rank of the (ground-truth) faulty compo-
nent in L: if the rank of the faulty component is lower, then
we need to examine fewer number of components before we
identify the faulty one. This effort, termed as the cost of di-

agnosis (D), is measured as D = r
m , where r is the rank

of the faulty component in L and m is the total number of
components. We can also define the cost of diagnosis by the
wasted effort (W), that captures the effort that is wasted in
examining non-faulty components before hitting the faulty
one: W = r�1

m�1 .
A recent work (Perez, Abreu, and van Deursen 2017)

claims that test-suites with good scores on adequacy met-
rics (like coverage) do not necessarily imply that these test-
suites offer good diagnosability. In fact, the authors per-
formed rigorous experiments to prove the contrary and pro-
posed a new metric, DDU, that attempts to capture the qual-
ity of test-suites for SFL. Interestingly, such metrics can be
plugged as fitness functions within Search-based Software
Test-generators (SST) (McMinn 2011) to automatically gen-
erate test-suites with the desired properties. One such popu-
lar search-based test-generator, Evosuite (Fraser and Arcuri
2011), accepts a program P, a fitness function f and employs
genetic algorithms to generate good test-suites by optimiz-
ing on f. Evosuite also provides fault oracles in the form of
a set of assertions which model the behavior of P. By exam-
ining deviations from these assertions, Evosuite can produce
test outcomes and generate the error vector for a test-suite.

In this work, we propose a new metric, Ulysis, to cap-
ture the quality of test-suites for diagnosability. Instead of
utilizing the structural properties of the activity matrix that
are likely to be good proxies of test-case diagnosability (the
road taken by prior efforts, like DDU (Perez, Abreu, and
van Deursen 2017)), our metric directly considers multiple
hypothetical universe (collectively defined as a multiverse),
each universe assuming a component to be faulty, and com-
putes the expected worst-case wasted effort for each of these
hypothetical universe. We implement our metric in Evosuite
and perform experiments on real-life software faults from
the Defects4J benchmarks (version 1.4.0). Our experiments
demonstrate that Ulysis outperforms the current state-of-the-
art metric, DDU, on all the relevant metrics: diagnosability,
coverage and size of test-suites.The Wilcoxon signed-rank
test (Woolson 2007) showed that our fault localization im-
provements over DDU are indeed statistically significant.
The following are the contributions of this work:

• We propose a new metric, Ulysis, to measure the diagnos-

ability of test-suites, essentially computing the expected
worst-case wasted effort instead of using proxies for good
diagnosability as used in previous works;

• We implement our metric as a fitness function in Evosuite
and evaluate the test-suites generated by our metric versus
those by DDU and coverage.

2 Our Approach

2.1 Ulysis: Multiverse Analysis

The test-generation metrics accept an activity matrix A as an
input and provide a score that quantifies the goodness of the
test-suite1. Given an activity matrix A, as the faulty compo-
nent is not known, we design a metric that attempts to reduce
the worst-case wasted effort for all components. Given a pro-
gram P with a set of m components C = {c1, c2, . . . , cm},
we consider m hypothetical universe (multiverse): the com-
ponent ci is assumed to be faulty in the i-th hypothetical
universe. Hence, the hypothetical universe Zi operates on a
spectrum consisting of the activity matrix A, with a hypo-
thetical error vector Ei according to what the error vector

would have been if ci was (persistently) faulty. This synthe-
sized error vector for Zi is, thus, nothing but the involvement
pattern of ci—a test passing whenever ci is not activated and
failing whenever it is.

For each such hypothetical universe Zi, we compute the
worst case wasted effort. Worst-case wasted effort is nothing
but the effort we waste to localize ci as the faulty component
in the hypothetical universe Zi in the worst case. Clearly, ci
will be the most likely faulty candidate in Zi as ci = Ei

i.e., the involvement pattern agrees perfectly with the error
vector. However, all components from {c1, c2, . . . , cm} that
have the same involvement pattern as ci will also have the
same likelihood of being faulty in Zi. Assuming the number
of such components is r, we will end up examining these r
components before identifying ci as the actual faulty com-
ponent in the worst-case scenario. From this observation, we
define a highest ambiguity set Li as:

Li =

⇢
{cj |cj 2 C, j 6= i}, if ci = ~0
{cj |cj 2 C, cj = ci, j 6= i}, otherwise.

(1)

Hence, the highest ambiguity set Li contains all these com-
ponents that, due to having the same involvement pattern as
ci, cannot be distinguished from ci by any fault localization
algorithm. As these elements in Li are components which,
in the worst case, will be examined before ci, the cardinality
of Li can be taken as measure of the worst-case wasted ef-

fort for localizing ci given Zi. We, thus, compute the worst
case wasted effort in Zi as:

Wi =
|Li|

m� 1
(2)

In an ideal scenario, where we should be able to perfectly
localize ci as the faulty component with zero wasted effort,
Wi = 0 (the highest ambiguity group contains only ci) and

1Note that the test-generation metrics do not have access to the
error vector as the test-generation phase does not have access to the
fault oracles. Localization is performed post test-generation.



in the worst case scenario, where we will end up examining
all other candidates before finally identifying ci as the faulty
component, Wi = 1 (the highest ambiguity group contains
all components other than ci). Therefore, our objective is
to minimize Wi for all components while generating test-
suites. Hence, we can define the overall quality of the test-
suite represented by A as the expectation over all Wi:

WUlysis =
mX

i=1

p(ci).Wi (3)

where, p(ci) is our prior belief about ci being the actual
faulty component. A previous work (Paterson et al. 2019)
has attempted to extract such possible distributions by past
history of failures, number of repository commits etc. With-
out prior knowledge (as done in this work), we assume a un-
informed prior where all components are assumed equally
likely to be faulty, i.e., p(c1) = p(c2) = · · · = p(cm) =
1/m. Thus Eqn. 3 reduces to:

WUlysis =
1

m

mX

i=1

Wi (4)

We refer to WUlysis as the Ulysis score. Since, enhancing
the quality of a test-suite can be expressed in terms of min-
imizing the Ulysis score, we can plug in Eqn. 4 as a fitness
function in any Search-based Software Testing (SST) tool
which aim to generate test-suites by optimizing the given
fitness function.

There is one other advantage of using WUlysis to mea-
sure the quality of A. Consider a situation where a partic-
ular component ck was never executed in any test case. In
such cases, the k-th column of A will contain all 0 values.
If ck is a 0 vector, then the corresponding imaginary error
vector Ek in the hypothetical universe Zk will also be a 0
vector. In that case, following Eqn. 1, Lk will contain all the
(m � 1) components from C other than ck. Consequently,
the value of Wk, following Eqn. 2 will be 1. Therefore, to
minimize Wk, the k-th component ck must be executed at
least once in any test case. This is important because, if ck is
the faulty component and it is never executed, then there is
no way for us to identify ck as the faulty component. There-
fore, optimizing our proposed metric will result in higher
coverage of a program as well. We give a brief demonstra-
tion of how to compute WUlysis using an example shown in
Figure 2. We start by assuming a hypothetical universe Z1

where c1 is the faulty component. Then, the corresponding
imaginary error vector will have the same pattern as c1. This
imaginary error vector in Z1 is shown by E1. Since, com-
ponents {c2, c3, c4} share the same involvement patterns as
c1, L1 = {c2, c3, c4}. Therefore, W1 = |L1|

m�1 = 3
5 . Sim-

ilarly, W2 = W3 = W4 = 3
5 . Now, when we assume c5

to be the faulty component in a hypothetical universe Z5,
E5 becomes the corresponding imaginary error vector and
L5 = � as no other component shares the same involvement
pattern as c5. Therefore, W5 = 0. When we assume c6 to be
faulty, the corresponding imaginary error vector E6 in Z6 is
a 0 vector as c6 is never executed in any test-case. There-
fore, following Eqn. 1, W6 = 1. Hence, following Eqn. 4,

Figure 2: Multiverse analysis example: Form a multiverse,
i.e., a set of hypothetical universe where we assume each
component of a program to be faulty and synthesize an
imaginary error vector in each universe. We compute the
worst-case wasted effort in each universe and finally take an
expectation of worst-case wasted effort over the multiverse
as a measure of the quality of A

WUlysis =
1
6 (

3
5 +

3
5 +

3
5 +

3
5 +0+1) = 17

30 . Our formulation
makes two simplifying assumptions:

• Single fault: We assume that the program has a fault in a
single component;

• Perfect detection: We assume that the tests do not exhibit
flakiness (Bell et al. 2018), i.e., the outcome of a test case
is failure if and only if the faulty component is triggered
in that particular test case.

Our experimental results demonstrate that our model
works well for real-life programs even when the above as-
sumptions do not hold.

2.2 Algorithm

Algorithm 1 takes an activity matrix A having n test cases
and m components as input and computes the value of the
fitness function Ulysis from Eqn. 4.

In Algorithm 1, line 1 initializes W to 0. Line 2 loops over
each component ci and imagines it to be the faulty compo-
nent in a hypothetical universe Zi. Line 3 initializes the car-
dinality h of the highest ambiguity set Li in Zi to 0. Lines
4 and 5 sets the value of h to (m� 1) if the involvement
pattern of the component ci represented by the i-th column
vector ~Ai is ~0 (i.e. the respective component was never acti-
vated). Otherwise, lines 6 – 12 count the number of column
vectors in A which has the same pattern as ~Ai and stores the
count in h. Line 13 computes the value of worst case wasted
effort Wi from Eqn. 2. At line 14, the value of Wi for each
hypothetical universe is accumulated at W and finally at line
16, the expected value of the worst case wasted effort for the
input activity matrix A is returned following Eqn. 4.



Algorithm 1 Ulysis

Input: Activity Matrix An⇥m

Output: WUlysis for A
1: W  0
2: for i = 1 to m do

3: h 0
4: if ~A[i] == ~0 then

5: h = m� 1
6: else

7: for j = 1 to m do

8: if ~A[j] == ~A[i] & j 6= i then

9: h h+ 1
10: end if

11: end for

12: end if

13: Wi  h/(m� 1)
14: W  W +Wi

15: end for

16: return W/m

3 Discussion

3.1 Overview of Density-Diversity-Uniqueness

metric (DDU)

As the name suggests, the DDU metric uses the three follow-
ing structural properties of an activity matrix A to generate
good test-suites in terms of their fault localization capability.

Density Given a program P with m components and a test-
suite with n tests, the density of an activity matrix A is
defined as: ⇢ =

Pn
i=1

Pm
j=1 Aij

n⇥m . This metric essentially at-
tempts to improve the entropy of the activity matrix, and
hence, the ideal value of density is 0.5.

Diversity Test-cases having the same activity pattern are
redundant, only increasing the size of the test-suite. Test-
cases should be diverse, i.e., execute different combina-
tions of components. The diversity measure (Perez, Abreu,
and van Deursen 2017) tries to ensure that each test pat-
tern in A (rows of A) is unique. Mathematically this is ex-
pressed as the Gini-Simpson index (Jost 2006): G = 1 �Pk

i=1 ni⇥(ni�1)
n⇥(n�1) , where k represents the number of groups

of test cases having unique activity patterns, ni is the num-
ber of test cases having the same activity pattern belonging
to group i and n is the total number of test cases. Essen-
tially, G measures how likely is it for two test cases, chosen
at random from A, to have the same activity pattern. If all
test cases are unique, then the value of G is 1.

Uniqueness The uniqueness measure (Baudry, Fleurey,
and Le Traon 2006) ensures that the number of components
having the same involvement pattern (columns of A) is re-
duced. To formulate uniqueness, we first define ambiguity

groups: if one or more components share the same involve-
ment pattern then we say that these components form an
ambiguity group. Uniqueness of a test-suite is measured as:
U = l

m , where l represents the number of ambiguity groups
in A and m is the total number of components. For a good

test-suite, the value of U should be 1, i.e., all component
patterns should be unique.

Perez et al. (Perez, Abreu, and van Deursen 2017) have
used a combination of the three measures stated above to
define their own fitness function DDU as: DDU = (1 �
|1� 2⇢|)⇥ G ⇥ U .

3.2 Ulysis versus DDU

As we have established in the previous section, DDU im-
proves the efficiency of fault localization by optimizing three
structural properties of the activity matrix. Optimizing den-
sity reduces the size of the test-suite while maintaining the
quality, optimizing diversity reduces redundancy and en-
sures that the test cases explore different combinations of
components and optimizing uniqueness ensures that the ac-
tual faulty component receives the highest possible suspi-
ciousness score. We have seen from our previous discussion
that if the value of the uniqueness measure (U ) is 1, i.e.,
each component pattern is unique, then the faulty compo-
nent will surely have a high suspiciousness score. However,
is it actually possible to reach this ideal scenario where we
are able to generate a test-suite with a uniqueness value of
1? If we want to generate a test-suite where each compo-
nent pattern is unique, then we must be able to execute each
component independently of each other in the correspond-
ing program. However, in real-life scenarios, this may not
always be the case. Program components may be dependant
on each other, such that if we execute one component, we
may invariably end up executing some other component. In
such cases, it will not possible to distinguish between these
dependent component patterns and we will get an activity
matrix containing ambiguity groups of size two or more. We

Figure 3: This example demonstrate a scenario where Ulysis
is able to judge (b) as a better test-suite than (a) whereas
DDU considers them both to be of the same quality.

have also observed similar cases in our experiments where
we generated test-suites on actual faulty programs (detailed
descriptions of these faulty programs and the experimental
setup is provided in the experiments section) by maximizing
the DDU metric. The median value of the uniqueness mea-
sure U for these test-suites were 0.5 and the mean value was
0.47 with a standard deviation of 0.32. Since, it is usually
not possible to get a test-suite with U = 1, let us instead



observe the quality of test-suites where U < 1.
Figures 3(a) and (b) demonstrate two such test-suites

where the value of U is less than 1. Assume that we have a
program having six components and we have generated two
test suites on this particular program. For both of the test-
suites in Figures 3(a) and (b), the value of density (⇢) is 0.5
and the value of diversity (G) is 1 as all the test cases have
unique activation patterns. For the test-suite in Figure 3(a),
there are three ambiguity groups: {c1, c2, c3, c4}, {c5} and
{c6}. Therefore, the uniqueness score U is 3

6 = 0.5. Simi-
larly, the test-suite in Figure 3(b) contains three ambiguity
groups as well: {c1, c2}, {c3, c4} and {c5, c6}. Hence, the
value of U is again 0.5 in this case. Therefore, according to
the DDU metric, both of these test-suites are equally good
in terms of effort spent to localize the faulty component in
the corresponding program.

Now, consider the simple fact that while performing fault
localization we are unaware of which component is actually
faulty. Therefore, to begin with, any of the six components
is equally likely to be faulty. So, we will assume each com-
ponent cj to be faulty in turn and try to measure the wasted
effort Wj needed to locate cj as the faulty component in the
worst case scenario for each of the test-suites shown in Fig-
ures 3(a) and (b).

For, the test-suite in Figure 3(a), if c1 is the faulty compo-
nent, then the outcome of each of the test-case where c1 is
executed, would be failure and the outcomes of the remain-
ing test cases would be success. Again we assume that the
outcome of a test case is always failure if the faulty compo-
nent is executed and success otherwise. Therefore, if c1 is
the faulty component, then E1 would be the corresponding
error vector. Now, since components {c1, c2, c3, c4} share
the same involvement pattern and this involvement pattern
is exactly the same as the error vector E1, all these four
components will have the highest suspiciousness score of
1 based on their similarity with E1. Since, all of them has
the same suspiciousness score, in the worst case scenario,
we will end up examining {c2, c3, c4} before we arrive at
the actual faulty component c1. Therefore, from Eqn. 2,
the worst-case wasted effort given c1 is faulty can be mea-
sured as W1 = 3

5 = 0.6. Similarly, if we assume any of
{c2, c3, c4} to be faulty, the worst-case wasted effort is go-
ing to be 0.6 in each case. However, for components c5 and
c6, the scenario is different. The error vectors correspond-
ing to the cases where we assume either c5 or c6 to be faulty,
are shown as E2 and E3 respectively. Since, the involvement
patterns of both c5 and c6 are unique, the worst-case wasted
effort, if either of these components were faulty, would be 0.

Now, let us examine the test-suite in Figure 3(b). This
test-suite contains three ambiguity groups of size two each:
{c1, c2}, {c3, c4} and {c5, c6}. E1 represents the error vec-
tor if either c1 or c2 is faulty. Similarly, E2 and E3 rep-
resents the error vectors corresponding to the scenarios if
we assume the components from the other two ambiguity
groups to be faulty respectively. Again, using Eqn. 2, we can
see that the worst-case wasted effort if c1 is buggy, will be
W1 = 1

5 = 0.2 since there is only one component c2 which
has the same involvement pattern as c1 and therefore, in the
worst case, may be examined before c1. Similarly, we can

see that the worst case wasted effort for all other scenarios
where each of {c2, c3, c4, c5, c6} is buggy, will be 0.2 if we
use this test-suite.

According to the DDU metric, both of these test-suites are
equally good in terms of effort spent to localize the faulty
component in the corresponding program. However, after
examining them in detail we are inclined to ask if that is
really the case. If we use the DDU metric to measure the
quality of a test-suite, we may choose any of these two test-
suites to localize the faulty component with the program. Let
us assume, we choose the test-suite given in Figure 3(a) and
component c5 is the actual faulty component. Then we are
in luck! As evident from our earlier discussion, we will be
able to identify c5 with zero wasted effort. However, if any
of {c1, c2, c3, c4} is faulty, then we would end up examining
60% of the program components before we are able to iden-
tify the actual fault. For real programs, which may contain
thousands of components, this will be disastrous.

On the other hand, if we choose the test-suite in Figure
3(b), then regardless of whichever component is faulty, we
will never have to examine more than 20% of the program
components before identifying the actual fault even in the
worst case scenario. Given that we have no prior knowledge
about which component is buggy, it is therefore far more
reasonable to select this particular test-suite for our purpose
of efficient fault localization.

Using our metric, the Ulysis scores of the test-suites in
Figures 3(a) and (b) following Eqn. 4, are 2

5 and 1
5 respec-

tively. This clearly demonstrates that, unlike DDU, our met-
ric is able to make a finer distinction between these two cases
and select the test-suite in Figure 3(b) as a better choice as
this will result in a lesser wasted effort overall regardless of
whichever component is faulty.

4 Experiments

Test-suites are typically evaluated on three criterion:

• Coverage: Though coverage is not a good diagnosability
metric (Staats et al. 2012), it is still an important metric
that allows faults to be triggered. Note that diagnosability
metrics are helpless unless failing tests are found.

• Diagnosability: This represents the test-suites that show
low wasted effort (or high ranks) for ground-truth faults
on SFL techniques, given fault triggering tests are avail-
able.

• Cost: This captures the cost of testing. Smaller test-suites
are preferred over bigger test-suites.

We pose three research questions to evaluate the perfor-
mance of our proposal.

RQ1 What is the saving of developer effort by our proposal
over prior techniques?

RQ2 Is the improvement in the ranking of the faulty component
by our proposal indeed statistically significant over prior
techniques like DDU and coverage?

RQ3 Is the quality of test-suites (size and coverage) produced
by our technique better than existing techniques?



Table 1: Comparison of Ulysis, DDU and Coverage

�Wcov �WDDU

�W > 0 59.05% 54.96%
�W = 0 12.38% 13.51%
�W < 0 28.57% 31.53%

We have performed our experiments on Defects4J ver-
sion 1.4.0 (Just, Jalali, and Ernst 2014) which is a collection
of Java project repositories. Defects4J contains 395 real-life
software bugs.

We have implemented Ulysis as a fitness function within
Evosuite (Fraser and Arcuri 2011)2 and compared it with
other state-of-the-art fitness functions such as DDU and
coverage (Fraser and Arcuri 2015) (available within Evo-
suite). To take into account the randomization within Evo-
suite, for each fault, we have generated 5 test-suites using
a time limit of 600 seconds on each fitness function (total
time taken is more than 60 hours). Post test-suite genera-
tion, we perform fault localization with the Ochiai metric
using the GZoltar tool (Campos et al. 2012). The reason we
use Ochiai is because it usually outperforms other similarity
based metrics (Abreu, Zoeteweij, and Van Gemund 2006)
and it is as good as Bayesian Reasoning techniques, if we
assume single faults (Abreu, Zoeteweij, and Van Gemund
2009a). We did not consider all test-suites for fault local-
ization as in some cases either Evosuite generated an empty
test-suite or no failing test cases were present in the spec-
trum when executed on the buggy version for either Ulysis
or the state-of-the-art approaches such as DDU and cover-
age. We found 111 such valid instances, on which we com-
pare the median effort over 5 test-suite generation attempts
with each of Ulysis, DDU and coverage. All experiments
are performed at branch granularity, i.e., the program com-
ponents are branches. We have done these experiments on a
16 core virtual machine with Intel Xeon processors having
2.1 GHz core frequency and 32 gigabytes of RAM.

4.1 RQ1: Fault Localization Performance

We quantify goodness of test-suites by their wasted effort W
(Eqn. 2). Given a fault, two fitness functions, say A and B,
are compared by the sign of the difference in wasted effort,
�W = WA �WB ; of course, as a lower value of wasted
effort is better, B is a better performing metric if �W > 0.

We denote �Wcov = WCoverage � WUlysis and
�WDDU = WDDU �WUlysis, where WCoverage, WDDU

and WUlysis represents the wasted effort needed to local-
ize the fault on test-suites generated by Coverage, DDU and
Ulysis (respectively).

In Table 1, rows 1, 2 and 3 record the number of instances
where �W values are positive (Ulysis is better), zero (both
metrics are equivalent) and negative (Ulysis is worse). We
find Ulysis is better than both the competing fitness func-
tions in more than about 55% instances while being better
or equivalent in about 68% instances.

2We plan to release our code post publication.
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Figure 4: Percentage decrease of effort in fault localization
while using Ulysis instead of DDU and Coverage.

Figures 4 (a) and (b) shows a detailed report on the per-
centage decrease in the fault localization effort while using
WUlysis rather than Wcov and WDDU on all of our 111
(faults) instances. It is seen that Ulysis reduces effort in most
instances. In some cases, the competing metrics get “lucky”
and are able to significantly decrease effort (the graphs are
truncated at -100%); few such cases are expected as per our
discussion in Section 3.2. Overall, the median of the percent-
age decrease in effort while using Ulysis rather than Cover-
age is 5.17% and the same over DDU is 3.48%.

4.2 RQ2: Statistical Significance

Having seen that Ulysis indeed seems to improve fault lo-
calization, we question if the improvement is indeed sta-
tistically significant? We take the effort needed for localiz-
ing each fault by coverage, DDU and Ulysis as individual
data columns (WCoverage,WDDU ,WUlysis) and perform a
Shapiro-Wilk test (Razali, Wah, and others 2011) for nor-
mality on each of these columns. The test refutes the null
hypothesis that any of these data columns are from a nor-
mal distribution with 99% confidence. The corresponding
p-values are 5.20e-14, 7.02e-14 and 1.98e-14 re-
spectively.

Having concluded that the effort data columns are



Table 2: Comparison between the quality of test-suites gen-
erated by Coverage, DDU and Ulysis

Function Median of Metrics
Cov Uniq Size DDU Ulysis

DDU 0.88 0.69 25 0.65 0.13
Coverage 0.93 0.35 10 0.14 0.16
Ulysis 0.92 0.76 18 0.33 0.08

not from a normal distribution, we perform a paired
Wilcoxon Signed-rank test (Woolson 2007) on �Wcov =
(WCoverage � WUlysis) and �WDDU = (WDDU �
WUlysis) respectively. Our null hypothesis is that the me-
dians of both �Wcov and �WDDU are 0, while the alter-
nate hypothesis is that the medians are greater than 0. In
both cases, we are able refute the null hypothesis with 99%
confidence, with corresponding p-values being 0.0015 for
�Wcov and 0.0017 for �WDDU .

4.3 RQ3: Quality of test-suites (size and coverage)

In Table 2, we show the median values of coverage (Cov),
DDU, uniqueness (Uniq), test-suite sizes in the number of
test cases (Size) and the Ulysis score of the test-suites gen-
erated by DDU, Coverage and Ulysis respectively (with the
best values set in bold). Not surprisingly, the test-suites gen-
erated by coverage attain the highest coverage with the least
number of tests; however, the diagnosabilty for these test-
suites is poor. Ulysis is comparable to coverage in terms of
coverage, albeit with slightly larger test-suites. Ulysis beats
DDU, the current state-of-the-art fitness function for diag-
nosabilty on uniqueness, coverage and test-suite size. As
discussed previously, uniqueness is a very important met-
ric. Diagnosability of a test-suite is directly correlated with
the uniqueness score and Ulysis scores higher than all the
other metrics in this regard, being even higher than DDU
that includes it as part of its fitness function. This indicates
that optimizing on the expected worst-case wasted effort au-
tomatically optimizes this very important metric.

5 Related work

Related studies on fault localization primarily focus on
two key aspects, test-suite generation and fault localization
(using the generated test-suites). Test-suite generation ap-
proaches can be broadly categorized into two types: ap-
proaches that seek to improve test-suite adequacy and ap-
proaches that seek to improve test-suite diagnosability.

The objective of the test-suite generation approaches, that
fall into the first category, is to increase the adequacy of a
generated test-suite. Adequacy of a test-suite refers to how
thorough a test-suite is. Maximization of coverage criterions
such as branch coverage (Fraser and Arcuri 2011) are exam-
ples of test-suite generation strategies using adequacy mea-
sures. Although, maximizing the coverage score of a test-
suite ensures that the test-suite covers an adequate number
of corresponding program components, it does not have a
direct correlation with the effectiveness of fault localization
(Staats et al. 2012). Other studies have demonstrated that
coverage and size of test-suites together exhibit a stronger

non-linear relation with the fault localization capabilities
of a test-suites (Namin and Andrews 2009). As we have
demonstrated in Sections 2.1 and 4.3, our approach, while
focused on enhancing the diagnosability of test-suites, can
also improve the coverage of test-suites.

The second category of test-site generation approaches fo-
cus on improving the diagnosability, i.e., fault localization
effectiveness of test-suites. One way to construct an ideal
test-suite for fault localization is to maximize the entropy
of the activity matrix (Abreu, Zoeteweij, and Van Gemund
2009b). Maximizing the entropy would produce a test-suite
with all possible combinations of components, however, as
a result, the test-suite may become prohibitively large. To
circumvent this problem, another approach suggests opti-
mizing the density of a test-suite to 0.5 which will re-
sult in maximization of entropy as well as a reduction in
the size of a test-suite (Gonzalez-Sanchez, Gross, and van
Gemund 2011). Other metrics, such as Uniqueness (Baudry,
Fleurey, and Le Traon 2006) and DDU (Perez, Abreu, and
van Deursen 2017) focus on enhancing certain structural
properties of the activity matrix in order to improve fault
localization performance of test-suites. While the objective
of our approach is also to improve the diagnosability of test-
suites, we choose to ignore such proxies and instead focus
on generating test-suites in such a way that the fault local-
ization performance is improved.

Fault localization approaches use the test-suites produced
by the above approaches and tries to assign suspicious-
ness scores to the program components based on how likely
they are to be faulty. Similarity based approaches work by
computing the similarity between the component involve-
ment patterns and the error vector pattern. There exist sev-
eral types of similarity scores, such as Ochiai (Meyer et al.
2004), Tarantula (Jones and Harrold 2005), Zoltar (Janssen,
Abreu, and Van Gemund 2009), Ample (Dallmeier, Lindig,
and Zeller 2005), Jaccard (Chen et al. 2002) etc., although
a recent study has demonstrated that Ochiai usually outper-
forms others in this regard. Spectrum-based Reasoning ap-
proaches (SR) (Abreu, Zoeteweij, and Van Gemund 2009b)
work by initially assigning a prior probability (likelihood
of being faulty) to each of the components and then updat-
ing the posterior probabilities of each component using the
Bayesian update rule.

6 Conclusion

We propose a test-suite diagnosability metric that gener-
ates test-suites with good fault-localization capability. Un-
like previous state-of-the-art approaches, instead of using
structural properties of the activity matrix as proxies (like
density or uniqueness) for the “goodness” of test-suites, we
improve diagnosability of test-suites by imagining multiple
hypothetical universe in which we assume individual com-
ponents to be faulty, and then try to reduce wasted effort to
identify the fault over this multiverse. The test-suites gener-
ated by our method are not only statistically better in terms
of fault localization than the diagnostic approaches, but they
also provide comparable or better component coverage.
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